Traces of Insect Activity at Cooper's D Fossil Site (Cradle of Humankind, South Africa)

Ichnos ◽  
2016 ◽  
Vol 23 (3-4) ◽  
pp. 322-339 ◽  
Author(s):  
Alexander H. Parkinson
2017 ◽  
Vol 73 (3) ◽  
Author(s):  
Francois Durand

A new fossil site was discovered in the Rising Star Cave in 2013 in the Cradle of Humankind in South Africa. This site which has yielded 1550 hominin bones so far is considered to be one of the richest palaeoanthropological sites in the world. The deposition of the fossils in a remote part of the cave system, approximately 100 m from the entrance, has resulted in a great deal of speculation. The relative inaccessibility of the site and the number of fossil bones it contained and the fact that virtually all these bones were those of a single species of hominid led to the conclusion that the bones were not deposited because of natural sedimentary processes, but that these phenomena were evidence of purposeful disposal or even burial of the dead by hominins. If this assumption is true, it would be the earliest evidence of a metaphysical awareness in humankind. The tenuous evidence on which this hypothesis rests will be discussed and a more plausible alternative explanation where water and gravity were responsible for the deposition of the remains is forwarded.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6202 ◽  
Author(s):  
Tara R. Edwards ◽  
Brian J. Armstrong ◽  
Jessie Birkett-Rees ◽  
Alexander F. Blackwood ◽  
Andy I.R. Herries ◽  
...  

Bolt’s Farm is a Plio-Pleistocene fossil site located within the southwestern corner of the UNESCO Hominid Fossil Sites of South Africa World Heritage Site. The site is a complex of active caves and more than 20 palaeokarst deposits or pits, many of which were exposed through the action of lime mining in the early 20th century. The pits represent heavily eroded cave systems, and as such associating the palaeocave sediments within and between the pits is difficult, especially as little geochronological data exists. These pits and the associated lime miner’s rubble were first explored by palaeoanthropologists in the late 1930s, but as yet no hominin material has been recovered. The first systematic mapping was undertaken by Frank Peabody as part of the University of California Africa Expedition (UCAE) in 1947–1948. A redrawn version of the map was not published until 1991 by Basil Cooke and this has subsequently been used and modified by recent researchers. Renewed work in the 2000s used Cooke’s map to try and relocate the original fossil deposits. However, Peabody’s map does not include all the pits and caves, and thus in some cases this was successful, while in others previously sampled pits were inadvertently given new names. This was compounded by the fact that new fossil bearing deposits were discovered in this new phase, causing confusion in associating the 1940s fossils with the deposits from which they originated; as well as associating them with the recently excavated material. To address this, we have used a Geographic Information System (GIS) to compare Peabody’s original map with subsequently published maps. This highlighted transcription errors between maps, most notably the location of Pit 23, an important palaeontological deposit given the recovery of well-preserved primate crania (Parapapio, Cercopithecoides) and partial skeletons of the extinct felid Dinofelis. We conducted the first drone and Differential Global Positioning System (DGPS) survey of Bolt’s Farm. Using legacy data, high-resolution aerial imagery, accurate DGPS survey and GIS, we relocate the original fossil deposits and propose a definitive and transparent naming strategy for Bolt’s Farm, based on the original UCAE Pit numbers. We provide datum points and a new comprehensive, georectified map to facilitate spatially accurate fossil collection for all future work. Additionally, we have collated recently published faunal data with historic fossil data to evaluate the biochronological potential of the various deposits. This suggests that the palaeocave deposits in different pits formed at different times with the occurrence of Equus in some pits implying ages of <2.3 Ma, whereas more primitive suids (Metridiochoerus) hint at a terminal Pliocene age for other deposits. This study highlights that Bolt’s Farm contains rare South African terminal Pliocene fossil deposits and creates a framework for future studies of the deposits and previously excavated material.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Lee R Berger ◽  
John Hawks ◽  
Darryl J de Ruiter ◽  
Steven E Churchill ◽  
Peter Schmid ◽  
...  

Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9221 ◽  
Author(s):  
Alberto Valenciano ◽  
Romala Govender

Giant mustelids are a paraphyletic group of mustelids found in the Neogene of Eurasia, Africa and North America. Most are known largely from dental remains, with their postcranial skeleton mostly unknown. Here, we describe new craniodental and postcranial remains of the large lutrine Sivaonyx hendeyi and the leopard-size gulonine Plesiogulo aff. monspessulanus from the early Pliocene site Langebaanweg, South Africa. The new material of the endemic S. hendeyi, includes upper incisors and premolars, and fragmentary humerus, ulna and a complete astragalus. Its postcrania shares more traits with the living Aonyx capensis than the late Miocene Sivaonyx beyi from Chad. Sivaonyx hendeyi could therefore be tentatively interpreted as a relatively more aquatic taxon than the Chadian species, comparable to A. capensis. The new specimens of Plesiogulo comprise two edentulous maxillae, including one of a juvenile individual with incomplete decidual dentition, and a fragmentary forelimb of an adult individual. The new dental measurements point to this form being amongst the largest specimens of the genus. Both P3-4 differs from the very large species Plesiogulo botori from late Miocene of Kenya and Ethiopia. This confirms the existence of two distinct large species of Plesiogulo in Africa during the Mio/Pliocene, P. botori in the Late Miocene of Eastern Africa (6.1–5.5 Ma) and Plesiogulo aff. monspessulanus at the beginning of the Pliocene in southern Africa (5.2 Ma). Lastly, we report for the first time the presence of both Sivaonyx and Plesiogulo in MPPM and LQSM at Langebaanweg, suggesting that the differences observed from the locality may be produced by sedimentation or sampling biases instead of temporal replacement within the carnivoran guild.


2019 ◽  
Vol 44 (15) ◽  
pp. 2968-2981 ◽  
Author(s):  
T.V. Makhubela ◽  
J.D. Kramers ◽  
D. Scherler ◽  
H. Wittmann ◽  
P.H.G.M. Dirks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document