Synthesis and Study of a Sulfur Heterocycle Fusedp-Phenylene Vinylene Conducting Polymer

1994 ◽  
Vol 95 (1-4) ◽  
pp. 507-508
Author(s):  
Martin Pomerantz ◽  
Jiping Wang ◽  
Seeyearl Seong ◽  
Kyle P. Starkey ◽  
Long Nguyen ◽  
...  
2001 ◽  
Vol 40 (Part 2, No. 5A) ◽  
pp. L474-L477 ◽  
Author(s):  
Takeshi Fujisawa ◽  
Ryutaro Ootake ◽  
Yusuke Nishihara ◽  
Akihiko Fujii ◽  
Katsumi Yoshino

1993 ◽  
Vol 328 ◽  
Author(s):  
Martin Pomerantz ◽  
Jiping Wang ◽  
Seeyearl Seong ◽  
Kyle P. Starkey ◽  
Long Nguyen ◽  
...  

ABSTRACTA new conducting polymer, poly (benzo[1,2-b:4,5-b′]dithiophene-4,8-diyl vinylene) (1), has been prepared by pyrolysis of a precursor polymer 2, which, in turn, was prepared by a multistep synthetic sequence (Scheme 1). The polymer has a UV-vis spectral maximum at 501 nm (2.48 eV), band-gap (band edge) of 1.92 eV and with FeC?3 doping a conductivity of 15 S cm1. Quantum Mechanical calculations using PRDDO, ab-initio and modified extended Hiickel Methodology on the Monomers, trimers and polymers, both aromatic and quinoid, provided structures and an absorption maximum band-gap which is consistent with either a planar aromatic polymer or a polymer which has both aromatic and quinoid units.


Author(s):  
Ain Uddin ◽  
Weifan Sang ◽  
Yong Gao ◽  
Kyle Plunkett

The synthesis of poly(p-xylylene)s (PPXs) with sidechains containing alkyl bromide functionality, and their post-polymer modification, is described. The PPXs were prepared by a diimide hydrogenation of poly(p-phenylene vinylene)s (PPVs) that were originally synthesized by a Gilch polymerization. The polymer backbone reduction was carried out with hydrazine hydrate in toluene at 80 °C to provide polymers with the sidechain-containing bromide functionality intact. To demonstrate post-polymer modification of the sidechains, the resulting PPX polymers were modified with trimethylamine to form tetraalkylammonium ion functionality and were evaluated as anion conducting membranes. While PPX homopolymers containing tetralkylammonium ions were completely water soluble and not able to form valuable films, PPX copolymers containing mixed tetraalkylammonium ions and hydrophobic chains were capable of film formation and alkaline stability. In addition, an in situ crosslinking process that used N,N,N',N'-tetramethyl-1,6-hexanediamine during the tetraalkylammonium formation of brominated PPX polymers was also evaluated and gave reasonable films with conductivities of ~10 mS-cm-1.


2019 ◽  
Author(s):  
Ain Uddin ◽  
Weifan Sang ◽  
Yong Gao ◽  
Kyle Plunkett

The synthesis of poly(p-xylylene)s (PPXs) with sidechains containing alkyl bromide functionality, and their post-polymer modification, is described. The PPXs were prepared by a diimide hydrogenation of poly(p-phenylene vinylene)s (PPVs) that were originally synthesized by a Gilch polymerization. The polymer backbone reduction was carried out with hydrazine hydrate in toluene at 80 °C to provide polymers with the sidechain-containing bromide functionality intact. To demonstrate post-polymer modification of the sidechains, the resulting PPX polymers were modified with trimethylamine to form tetraalkylammonium ion functionality and were evaluated as anion conducting membranes. While PPX homopolymers containing tetralkylammonium ions were completely water soluble and not able to form valuable films, PPX copolymers containing mixed tetraalkylammonium ions and hydrophobic chains were capable of film formation and alkaline stability. In addition, an in situ crosslinking process that used N,N,N',N'-tetramethyl-1,6-hexanediamine during the tetraalkylammonium formation of brominated PPX polymers was also evaluated and gave reasonable films with conductivities of ~10 mS-cm-1.


2016 ◽  
Vol 4 (2) ◽  
pp. 1
Author(s):  
KUMAR RAJIV ◽  
SHARMA SHUCHI ◽  
DHIMAN NARESH ◽  
PATHAK DINESH ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document