The Sensitivity of PM25Source-Receptor Relationships to Atmospheric Chemistry and Transport in a Three-Dimensional Air Quality Model

2000 ◽  
Vol 50 (3) ◽  
pp. 428-435 ◽  
Author(s):  
Christian Seigneur ◽  
Cathryn Tonne ◽  
Krishnakumar Vijayaraghavan ◽  
Prasad Pai ◽  
Leonard Levin
2016 ◽  
Author(s):  
E. Solazzo ◽  
S. Galmarini

Abstract. In this study, methods are proposed to diagnose the causes of errors in air quality (AQ) modelling systems. We investigate the deviation between modelled and observed time series of surface ozone through a revised formulation for breaking down the mean square error (MSE) into bias, variance, and the minimum achievable MSE (mMSE). The bias measures the accuracy and implies the existence of systematic errors and poor representation of data complexity, the variance measures the precision and provides an estimate of the variability of the modelling results in relation to the observed data, and the mMSE reflects unsystematic errors and provides a measure of the associativity between the modelled and the observed fields through the correlation coefficient. Each of the error components is analysed independently and apportioned to resolved process based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) and as a function of model complexity. The apportionment of the error is applied to the AQMEII (Air Quality Model Evaluation International Initiative) group of models, which embrace the majority of regional AQ modelling systems currently used in Europe and North America. The proposed technique has proven to be a compact estimator of the operational metrics commonly used for model evaluation (bias, variance, and correlation coefficient), and has the further benefit of apportioning the error to the originating timescale, thus allowing for a clearer diagnosis of the process that caused the error.


2016 ◽  
Author(s):  
Efisio Solazzo ◽  
Roberto Bianconi ◽  
Christian Hogrefe ◽  
Gabriele Curci ◽  
Ummugulsum Alyuz ◽  
...  

Abstract. Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) helping to detect causes of models error, and iii) identifying the processes and scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance and covariance) can help to assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the former phases of AQMEII. The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact of model inputs (emissions and boundary conditions) and poor representation of the stable boundary layer on model bias, results also highlighted the high inter-dependencies among meteorological and chemical variables, as well as among their errors. This indicates that the evaluation of air quality model performance for individual pollutants needs to be supported by complementary analysis of meteorological fields and chemical precursors to provide results that are more insightful from a model development perspective. The error embedded in the emissions is dominant for primary species (CO, PM, NO) and largely outweighs the error from any other source. The uncertainty in meteorological fields is most relevant to ozone. Some further aspects emerged whose interpretation requires additional consideration, such as, among others, the uniformity of the synoptic error being region and model-independent, observed for several pollutants; the source of unexplained variance for the diurnal component; and the type of error caused by deposition and at which scale.


2019 ◽  
Vol 12 (8) ◽  
pp. 3357-3399 ◽  
Author(s):  
Matthias Karl ◽  
Sam-Erik Walker ◽  
Sverre Solberg ◽  
Martin O. P. Ramacher

Abstract. This paper describes the CityChem extension of the Eulerian urban dispersion model EPISODE. The development of the CityChem extension was driven by the need to apply the model in largely populated urban areas with highly complex pollution sources of particulate matter and various gaseous pollutants. The CityChem extension offers a more advanced treatment of the photochemistry in urban areas and entails specific developments within the sub-grid components for a more accurate representation of dispersion in proximity to urban emission sources. Photochemistry on the Eulerian grid is computed using a numerical chemistry solver. Photochemistry in the sub-grid components is solved with a compact reaction scheme, replacing the photo-stationary-state assumption. The simplified street canyon model (SSCM) is used in the line source sub-grid model to calculate pollutant dispersion in street canyons. The WMPP (WORM Meteorological Pre-Processor) is used in the point source sub-grid model to calculate the wind speed at plume height. The EPISODE–CityChem model integrates the CityChem extension in EPISODE, with the capability of simulating the photochemistry and dispersion of multiple reactive pollutants within urban areas. The main focus of the model is the simulation of the complex atmospheric chemistry involved in the photochemical production of ozone in urban areas. The ability of EPISODE–CityChem to reproduce the temporal variation of major regulated pollutants at air quality monitoring stations in Hamburg, Germany, was compared to that of the standard EPISODE model and the TAPM (The Air Pollution Model) air quality model using identical meteorological fields and emissions. EPISODE–CityChem performs better than EPISODE and TAPM for the prediction of hourly NO2 concentrations at the traffic stations, which is attributable to the street canyon model. Observed levels of annual mean ozone at the five urban background stations in Hamburg are captured by the model within ±15 %. A performance analysis with the FAIRMODE DELTA tool for air quality in Hamburg showed that EPISODE–CityChem fulfils the model performance objectives for NO2 (hourly), O3 (daily max. of the 8 h running mean) and PM10 (daily mean) set forth in the Air Quality Directive, qualifying the model for use in policy applications. Envisaged applications of the EPISODE–CityChem model are urban air quality studies, emission control scenarios in relation to traffic restrictions and the source attribution of sector-specific emissions to observed levels of air pollutants at urban monitoring stations.


2015 ◽  
Vol 15 (1) ◽  
pp. 745-778 ◽  
Author(s):  
X. Fu ◽  
S. X. Wang ◽  
L. M. Ran ◽  
J. E. Pleim ◽  
E. Cooter ◽  
...  

Abstract. Atmospheric ammonia (NH3) plays an important role in atmospheric chemistry. China is one of the largest NH3 emitting countries with the majority of NH3 emissions coming from the agricultural practices, such as fertilizer application and livestock. The current NH3 emission estimates in China are mainly based on pre-defined emission factors that lack the temporal or spatial details, which are needed to accurately predict NH3 emissions. In this study, we estimate, for the first time, the NH3 emission from the agricultural fertilizer application in China online using an agricultural fertilizer modeling system coupling a regional air quality model (the Community Multi-Scale Air Quality model, CMAQ) and an agro-ecosystem model (the Environmental Policy Integrated Climate model, EPIC), which improves the spatial and temporal resolution of NH3 emission from this sector. Cropland area data of 14 crops from 2710 counties and the Moderate Resolution Imaging Spectroradiometer (MODIS) land use data are combined to determine the crop distribution. The fertilizer application rate and method for different crop are collected at provincial or agriculture-regional level. The EPIC outputs of daily fertilizer application and soil characteristics are inputed into the CMAQ model and the hourly NH3 emission are calculated online with CMAQ running. The estimated agricultural fertilizer NH3 emission in this study is about 3 Tg in 2011. The regions with the highest modeled emission rates are located in the North China Plain. Seasonally, the peak ammonia emissions occur from April to July.Compared with previous researches, this method considers more influencing factors, such as meteorological fields, soil and the fertilizer application, and provides improved NH3 emission with higher spatial and temporal resolution.


Sign in / Sign up

Export Citation Format

Share Document