nh3 emission
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 59)

H-INDEX

16
(FIVE YEARS 2)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 472
Author(s):  
Qianqian Ma ◽  
Yanli Li ◽  
Jianming Xue ◽  
Dengmiao Cheng ◽  
Zhaojun Li

Here, we investigated the impact of different turning frequency (TF) on dynamic changes of N fractions, NH3 emission and bacterial/archaeal community during chicken manure composting. Compared to higher TF (i.e., turning every 1 or 3 days in CMS1 or CMS3 treatments, respectively), lower TF (i.e., turning every 5 or 7 days in CMS5 or CMS7 treatments, respectively) decreased NH3 emission by 11.42–18.95%. Compared with CMS1, CMS3 and CMS7 treatments, the total nitrogen loss of CMS5 decreased by 38.03%, 17.06% and 24.76%, respectively. Ammonia oxidizing bacterial/archaeal (AOB/AOA) communities analysis revealed that the relative abundance of Nitrosospira and Nitrososphaera was higher in lower TF treatment during the thermophilic and cooling stages, which could contribute to the reduction of NH3 emission. Thus, different TF had a great influence on NH3 emission and microbial community during composting. It is practically feasible to increase the abundance of AOB/AOA through adjusting TF and reduce NH3 emission the loss of nitrogen during chicken manure composting.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1693
Author(s):  
Xiaomiao Jiao ◽  
Ruijing Ni ◽  
Lulu Chen ◽  
Jamiu Adetayo Adeniran ◽  
Hongjian Weng ◽  
...  

Seven scenarios were designed to study the national environmental benefits of ULE in coal-fired power plants (CPPs), ULE in industrial coal burning (ICB) and NH3 emission reduction by using the GEOS-Chem model. The results showed that although the CPPs have achieved the ULE transformation target, the PM2.5 concentration across the country has decreased by 4.8% (1.4 μg/m3). Due to the complex non-linear chemical competition mechanism among nitrate and sulfate, the average concentration of nitrate in the country has increased by 1.5% (0.1 μg/m3), which has reduced the environmental benefits of the power plant emission reduction. If the ULE technology is applied to the ICB to further reduce NOx and SO2, although the PM2.5 concentration can be reduced by 10.1% (2.9 μg/m3), the concentration of nitrate will increase by 2.7% (0.2 μg/m3). Based on the CPPs-ULE, NH3 emissions reduced by 30% and 50% can significantly reduce the concentration of ammonium and nitrate, so that the PM2.5 concentration is decreased by 11.5% (3.3 μg/m3) and 16.5% (4.7 μg/m3). Similarly, based on the CPPs-ICB-ULE, NH3 emissions can be reduced by 30% and 50% and the PM2.5 concentration reduced by 15.6% (4.4 μg/m3) and 20.3% (5.8 μg/m3). The CPPs and ICB use the ULE technology to reduce NOx and SO2, thereby reducing the concentration of ammonium and sulfate, causing the PM2.5 concentration to decline, and NH3 reduction is mainly achieved through reducing the concentration of ammonium and nitrate to reduce the concentration of PM2.5. In order to better reduce the concentration of PM2.5, NOx, SO2 and NH3 emission reduction control measures should be comprehensively considered in different regions of China. By comprehensively considering the economic cost and environmental benefits of ULE in ICB and NH3 emission reduction, an optimal haze control scheme can be determined.


Author(s):  
Youfan Chen ◽  
Lin Zhang ◽  
Daven K. Henze ◽  
Yuanhong Zhao ◽  
Xiao Lu ◽  
...  

Abstract Emissions of reactive nitrogen as ammonia (NH3) and nitrogen oxides (NOx), together with sulfur dioxide (SO2), contribute to formation of secondary PM2.5 in the atmosphere. Satellite observations of atmospheric NH3, NO2, and SO2 levels since the 2000s provide valuable information to constrain the spatial and temporal variability of their emissions. Here we present a bottom-up Chinese NH3 emission inventory combined with top-down estimates of Chinese NOx and SO2 emissions using OMI satellite observations, aiming to quantify the interannual variations of reactive nitrogen emissions in China and their contributions to PM2.5 air pollution over 2005–2015. We find small interannual changes in the total Chinese anthropogenic NH3 emissions during 2005–2016 (12.0–13.3 Tg with over 85% from agricultural sources), but large interannual change in top-down Chinese NOx and SO2 emissions. Chinese NOx emissions peaked around 2011 and declined by 22% during 2011–2015, and Chinese SO2 emissions declined by 55% in 2015 relative to that in 2007. Using the GEOS-Chem chemical transport model simulations, we find that rising atmospheric NH3 levels in eastern China since 2011 as observed by IASI and AIRS satellites are mainly driven by rapid reductions in SO2 emissions. The 2011–2015 Chinese NOx emission reductions have decreased regional annual mean PM2.5 by 2.3–3.8 μg m-3. Interannual PM2.5 changes due to NH3 emission changes are relatively small, but further control of agricultural NH3 emissions can be effective for PM2.5 pollution mitigation in eastern China.


Author(s):  
Wuying Yi ◽  
Jianlin Shen ◽  
Guoping Liu ◽  
Juan Wang ◽  
Lifei Yu ◽  
...  

Abstract Abstract Intensive livestock production has been increasing, and has resulted in the emission of more than seven teragram per year of ammonia (NH3) in China in recent years. However, little is known about the fate of the emitted NH3, especially the dry deposition of NH3 in the environs of intensive animal farms. In this study, the spatial and temporal variations of NH3 deposition in the environs of an intensive fattening pig farm were investigated in the central south of China. NH3 concentrations were measured at sites situated 50, 100, 200, 300, and 500 m in the downwind direction from the farm each month from July 2018 to June 2019. The NH3 deposition was calculated based on a bidirectional NH3 exchange model. The monthly NH3 emissions from the pig farm were estimated based on the breeding stock. The annual average NH3 concentrations ranged from 1,200 to 14 μg m-3 at the downwind sites within 500 m of the pig farm, exhibiting exponential decay as distance increased. Strong seasonality in NH3 deposition was observed, with the highest season being in the summer and lowest in the winter, and air temperature was found to be an important factor affecting this seasonal variation. The estimated monthly total dry deposition within 500 m of the pig farm ranged from 92 to 1,400 kg NH3-N mo-1, which accounted for 4.1 to 14% of the total monthly NH3 emissions from the pig farm. The estimated total NH3 emissions and NH3 deposition from the pig farm were 63,000 kg NH3-N yr-1 and 5,400 kg NH3-N yr-1, respectively, with the annual average ratio of NH3 deposition to NH3 emission being 8.6%. This study found NH3 deposition around intensive pig farms to be high, and determined it as a significant fate of the NH3 emitted from pig farms.


Author(s):  
Zexuan Zhang ◽  
Yingying Yan ◽  
Shaofei Kong ◽  
Qimin Deng ◽  
Si Qin ◽  
...  

2021 ◽  
Vol 156 ◽  
pp. 106699
Author(s):  
A. Clappier ◽  
P. Thunis ◽  
M. Beekmann ◽  
J.P. Putaud ◽  
A. de Meij

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3170
Author(s):  
Maqsood Sadiq ◽  
Usama Mazhar ◽  
Ghulam Abbas Shah ◽  
Zeshan Hassan ◽  
Zahid Iqbal ◽  
...  

Currently, the global agriculture productivity is heavily relied on the use of chemical fertilizers. However, the low nutrient utilization efficiency (NUE) is the main obstacle for attaining higher crop productivity and reducing nutrients losses from these fertilizers to the environment. Coating fertilizer with micronutrients and biopolymer can offer an opportunity to overcome these fertilizers associated problems. Here, we coated urea with zinc sulphate (ZnS) and ZnS plus molasses (ZnSM) to control its N release, decrease the ammonia (NH3) volatilization and improve N utilization efficiency by sunflower. Morphological analysis confirmed a uniform coating layer formation of both formulations on urea granules. A slow release of N from ZnS and ZnSM was observed in water. After soil application, ZnSM decreased the NH3 emission by 38% compared to uncoated urea. Most of the soil parameters did not differ between ZnS and uncoated urea treatment. Microbial biomass N and Zn in ZnSM were 125 and 107% higher than uncoated urea, respectively. Soil mineral N in ZnSM was 21% higher than uncoated urea. Such controlled nutrient availability in the soil resulted in higher sunflower grain yield (53%), N (80%) and Zn (126%) uptakes from ZnSM than uncoated fertilizer. Hence, coating biopolymer with Zn on urea did not only increase the sunflower yield and N utilization efficiency but also meet the micronutrient Zn demand of sunflower. Therefore, coating urea with Zn plus biopolymer is recommended to fertilizer production companies for improving NUE, crop yield and reducing urea N losses to the environment in addition to fulfil crop micronutrient demand.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1222
Author(s):  
Thomas Sepperer ◽  
Alexander Petutschnigg ◽  
Konrad Steiner

With the increasing demand for food worldwide, the use of fertilizers in the agricultural industry has grown. Natural fertilizers derived from the use of animal manure slurry, especially cattle and cow, are responsible for 40% of the agricultural ammonia emission. The EU defined the goal to reduce NH3 emission drastically until 2030, yet until today an overall increase has been observed, making it more difficult to reach the target. In this study, we used two by-products from the dairy industry, namely flushing milk and acidic whey, to lower the pH of cattle manure slurry and therefore mitigate the loss of nitrogen in the form of ammonia into the atmosphere, making it available in the soil. Measurements of pH, ammonium nitrogen, total Kjeldahl nitrogen, and lactic acid bacteria colonies were conducted in a lab-scale experiment to test the hypothesis. Afterwards, pH measurements were conducted on bigger samples. We found that whey effectively reduced the pH of manure below 5, therefore moving the ammonia/ammonium equilibrium strongly towards ammonium. Flushing milk on the other hand lowered the pH to a smaller extent, yet allowed for faster hydrolysis of urea into ammonium. The findings in this study present a suitable and environmentally friendly approach to help reach the climate goals set by the EU by using by-products from the same industry branch, therefore being a suitable example of circular economy.


2021 ◽  
Vol 34 ◽  
pp. 11-20
Author(s):  
Sabrina Jaeman ◽  
Khairudin Nurulhuda ◽  
Adibah Mohd Amin ◽  
Muhammad Firdaus Sulaiman ◽  
Hasfalina Che Man ◽  
...  

Ammonia (NH3) emission accounts for a loss of 10 to 60% of the total nitrogen input in rice fields. NH3 in the air reacts with sulphuric acid, nitric acid and hydrochloric acid to form ammonium salt, which increases the concentration of PM2.5 particles in the atmosphere. These fine particles can cause respiratory problems. A reliable NH3 sampler is important in order to quantify the NH3 emission. The objective of this study is to evaluate the suitability of three 3D printed materials, namely acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA) and polypropylene (PP) compared to stainless steel and glass, as the interior material of an NH3 passive sampler for use with the chemical-trap approach; Stainless steel and glass are typically used for construction of the NH3 passive sampler. The sample plates were coated with acetone with 3% oxalic acid and tested in closed static chambers with three different NH3 sources. ABS, PP and PLA tolerated the acetone solution with PP being the least reactive. However, PP heavily warped during 3D-printing resulting in a deformed shape. Performance of coated ABS plates in trapping NH3 is similar to stainless steel and glass plates.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1044
Author(s):  
James T. Kelly ◽  
Carey Jang ◽  
Yun Zhu ◽  
Shicheng Long ◽  
Jia Xing ◽  
...  

Reducing PM2.5 and ozone concentrations is important to protect human health and the environment. Chemical transport models, such as the Community Multiscale Air Quality (CMAQ) model, are valuable tools for exploring policy options for improving air quality but are computationally expensive. Here, we statistically fit an efficient polynomial function in a response surface model (pf-RSM) to CMAQ simulations over the eastern U.S. for January and July 2016. The pf-RSM predictions were evaluated using out-of-sample CMAQ simulations and used to examine the nonlinear response of air quality to emission changes. Predictions of the pf-RSM are in good agreement with the out-of-sample CMAQ simulations, with some exceptions for cases with anthropogenic emission reductions approaching 100%. NOx emission reductions were more effective for reducing PM2.5 and ozone concentrations than SO2, NH3, or traditional VOC emission reductions. NH3 emission reductions effectively reduced nitrate concentrations in January but increased secondary organic aerosol (SOA) concentrations in July. More work is needed on SOA formation under conditions of low NH3 emissions to verify the responses of SOA to NH3 emission changes predicted here. Overall, the pf-RSM performs well in the eastern U.S., but next-generation RSMs based on deep learning may be needed to meet the computational requirements of typical regulatory applications.


Sign in / Sign up

Export Citation Format

Share Document