scholarly journals The Kazhdan Property of the Mapping Class Group of Closed Surfaces and the First Cohomology Group of Its Cofinite Subgroups

2000 ◽  
Vol 9 (2) ◽  
pp. 261-274 ◽  
Author(s):  
Feraydoun Taherkhani
Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter introduces the reader to Artin's classical braid groups Bₙ. The group Bₙ is isomorphic to the mapping class group of a disk with n marked points. Since disks are planar, the braid groups lend themselves to special pictorial representations. This gives the theory of braid groups its own special flavor within the theory of mapping class groups. The chapter begins with a discussion of three equivalent ways of thinking about the braid group, focusing on Artin's classical definition, fundamental groups of configuration spaces, and the mapping class group of a punctured disk. It then presents some classical facts about the algebraic structure of the braid group, after which a new proof of the Birman–Hilden theorem is given to relate the braid groups to the mapping class groups of closed surfaces.


2006 ◽  
Vol 15 (09) ◽  
pp. 1231-1244 ◽  
Author(s):  
PING ZHANG

Consider a surface braid group of n strings as a subgroup of the isotopy group of homeomorphisms of the surface permuting n fixed distinguished points. Each automorphism of the surface braid group (respectively, of the special surface braid group) is shown to be a conjugate action on the braid group (respectively, on the special braid group) induced by a homeomorphism of the underlying surface if the closed surface, either orientable or non-orientable, is of negative Euler characteristic. In other words, the group of automorphisms of such a surface braid group is isomorphic to the extended mapping class group of the surface with n punctures, while the outer automorphism group of the surface braid group is isomorphic to the extended mapping class group of the closed surface itself.


2017 ◽  
Vol 153 (2) ◽  
pp. 294-312 ◽  
Author(s):  
Emmanuel Giroux ◽  
Patrick Massot

In this paper, we determine the group of contact transformations modulo contact isotopies for Legendrian circle bundles over closed surfaces of non-positive Euler characteristic. These results extend and correct those presented by the first author in a former work. The main ingredient we use is connectedness of certain spaces of embeddings of surfaces into contact 3-manifolds. This connectedness question is also studied for itself with a number of (hopefully instructive) examples.


Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter considers the Dehn–Lickorish theorem, which states that when g is greater than or equal to 0, the mapping class group Mod(Sɡ) is generated by finitely many Dehn twists about nonseparating simple closed curves. The theorem is proved by induction on genus, and the Birman exact sequence is introduced as the key step for the induction. The key to the inductive step is to prove that the complex of curves C(Sɡ) is connected when g is greater than or equal to 2. The simplicial complex C(Sɡ) is a useful combinatorial object that encodes intersection patterns of simple closed curves in Sɡ. More detailed structure of C(Sɡ) is then used to find various explicit generating sets for Mod(Sɡ), including those due to Lickorish and to Humphries.


Author(s):  
Jacob Russell ◽  
Davide Spriano ◽  
Hung Cong Tran

AbstractWe show the mapping class group, $${{\,\mathrm{CAT}\,}}(0)$$ CAT ( 0 ) groups, the fundamental groups of closed 3-manifolds, and certain relatively hyperbolic groups have a local-to-global property for Morse quasi-geodesics. This allows us to generalize combination theorems of Gitik for quasiconvex subgroups of hyperbolic groups to the stable subgroups of these groups. In the case of the mapping class group, this gives combination theorems for convex cocompact subgroups. We show a number of additional consequences of this local-to-global property, including a Cartan–Hadamard type theorem for detecting hyperbolicity locally and discreteness of translation length of conjugacy classes of Morse elements with a fixed gauge. To prove the relatively hyperbolic case, we develop a theory of deep points for local quasi-geodesics in relatively hyperbolic spaces, extending work of Hruska.


2018 ◽  
Vol 27 (06) ◽  
pp. 1850043 ◽  
Author(s):  
Paul P. Gustafson

We show that any twisted Dijkgraaf–Witten representation of a mapping class group of an orientable, compact surface with boundary has finite image. This generalizes work of Etingof et al. showing that the braid group images are finite [P. Etingof, E. C. Rowell and S. Witherspoon, Braid group representations from twisted quantum doubles of finite groups, Pacific J. Math. 234 (2008)(1) 33–42]. In particular, our result answers their question regarding finiteness of images of arbitrary mapping class group representations in the affirmative. Our approach is to translate the problem into manipulation of colored graphs embedded in the given surface. To do this translation, we use the fact that any twisted Dijkgraaf–Witten representation associated to a finite group [Formula: see text] and 3-cocycle [Formula: see text] is isomorphic to a Turaev–Viro–Barrett–Westbury (TVBW) representation associated to the spherical fusion category [Formula: see text] of twisted [Formula: see text]-graded vector spaces. The representation space for this TVBW representation is canonically isomorphic to a vector space of [Formula: see text]-colored graphs embedded in the surface [A. Kirillov, String-net model of Turaev-Viro invariants, Preprint (2011), arXiv:1106.6033 ]. By analyzing the action of the Birman generators [J. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969) 213–242] on a finite spanning set of colored graphs, we find that the mapping class group acts by permutations on a slightly larger finite spanning set. This implies that the representation has finite image.


2008 ◽  
Vol 17 (01) ◽  
pp. 47-53 ◽  
Author(s):  
PING ZHANG

It is shown that for the braid group Bn(M) on a closed surface M of nonnegative Euler characteristic, Out (Bn(M)) is isomorphic to a group extension of the group of central automorphisms of Bn(M) by the extended mapping class group of M, with an explicit and complete description of Aut (Bn(S2)), Aut (Bn(P2)), Out (Bn(S2)) and Out (Bn(P2)).


Sign in / Sign up

Export Citation Format

Share Document