MHD dynamo simulation using the GeoFEM platform—verification by the dynamo benchmark test

2005 ◽  
Vol 19 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Hiroaki Matsui ◽  
Hiroshi Okuda §
Keyword(s):  
2016 ◽  
Vol 52 (1) ◽  
pp. 15-24
Author(s):  
A. Chupin ◽  
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1477
Author(s):  
Chun-Yao Lee ◽  
Guang-Lin Zhuo

This paper proposes a hybrid whale optimization algorithm (WOA) that is derived from the genetic and thermal exchange optimization-based whale optimization algorithm (GWOA-TEO) to enhance global optimization capability. First, the high-quality initial population is generated to improve the performance of GWOA-TEO. Then, thermal exchange optimization (TEO) is applied to improve exploitation performance. Next, a memory is considered that can store historical best-so-far solutions, achieving higher performance without adding additional computational costs. Finally, a crossover operator based on the memory and a position update mechanism of the leading solution based on the memory are proposed to improve the exploration performance. The GWOA-TEO algorithm is then compared with five state-of-the-art optimization algorithms on CEC 2017 benchmark test functions and 8 UCI repository datasets. The statistical results of the CEC 2017 benchmark test functions show that the GWOA-TEO algorithm has good accuracy for global optimization. The classification results of 8 UCI repository datasets also show that the GWOA-TEO algorithm has competitive results with regard to comparison algorithms in recognition rate. Thus, the proposed algorithm is proven to execute excellent performance in solving optimization problems.


2021 ◽  
Vol 15 ◽  
Author(s):  
Weishi Li ◽  
Kuanting Wang ◽  
Shiaofen Fang

Background: Selective laser melting is the best-established additive manufacturing technology for high-quality metal part manufacturing. However, the widespread acceptance of the technology is still underachieved, especially in critical applications, due to the absence of a thorough understanding of the technology, although several benchmark test artifacts have been developed to characterize the performance of selective laser melting machines. Objective: The objective of this paper is to inspire new designs of benchmark test artifacts to understand the selective laser melting process better and promote the acceptance of the selective laser melting technology. Method: The existing benchmark test artifacts for selective laser melting are analyzed comparatively, and the design guidelines are discussed. Results: The modular approach should still be adopted in designing new benchmark test artifacts in the future, and task-specific test artifacts may also need to be considered further to validate the machine performance for critical applications. The inclusion of the design model in the manufactured artifact, instead of the conformance to the design specifications, should be evaluated after the artifact is measured for the applications requiring high-dimensional accuracy and high surface quality. Conclusion: The benchmark test artifact for selective laser melting is still under development, and a breakthrough of the measuring technology for internal and/or inaccessible features will be beneficial for understanding the technology.


1998 ◽  
Author(s):  
K.-H. Chen ◽  
A. Norris ◽  
A. Quealy ◽  
N.-S. Liu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document