Mitochondrial scenario: roles of mitochondrial dynamics in acute myocardial ischemia/reperfusion injury

2020 ◽  
Vol 41 (1) ◽  
pp. 1-5
Author(s):  
David Mui ◽  
Ying Zhang
2013 ◽  
Vol 118 (6) ◽  
pp. 1460-1465 ◽  
Author(s):  
Jean-Luc Fellahi ◽  
Marc-Olivier Fischer ◽  
Georges Daccache ◽  
Jean-Louis Gerard ◽  
Jean-Luc Hanouz

Abstract Positive inotropic agents should be used judiciously when managing surgical patients with acute myocardial ischemia–reperfusion injury, as use of these inotropes is not without potential adverse effects.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Min Wang ◽  
Rui-ying Wang ◽  
Jia-hui Zhou ◽  
Xue-heng Xie ◽  
Gui-bo Sun ◽  
...  

Calenduloside E (CE) is a natural triterpenoid saponin isolated from Aralia elata (Miq.) Seem., a well-known traditional Chinese medicine. Our previous studies have shown that CE exerts cardiovascular protective effects both in vivo and in vitro. However, its role in myocardial ischemia/reperfusion injury (MIRI) and the mechanism involved are currently unknown. Mitochondrial dynamics play a key role in MIRI. This study investigated the effects of CE on mitochondrial dynamics and the signaling pathways involved in myocardial ischemia/reperfusion (MI/R). The MI/R rat model and the hypoxia/reoxygenation (H/R) cardiomyocyte model were established in this study. CE exerted significant cardioprotective effects in vivo and in vitro by improving cardiac function, decreasing myocardial infarct size, increasing cardiomyocyte viability, and inhibiting cardiomyocyte apoptosis associated with MI/R. Mechanistically, CE restored mitochondrial homeostasis against MI/R injury through improved mitochondrial ultrastructure, enhanced ATP content and mitochondrial membrane potential, and reduced mitochondrial permeability transition pore (MPTP) opening, while promoting mitochondrial fusion and preventing mitochondrial fission. However, genetic silencing of OPA1 by siRNA abolished the beneficial effects of CE on cardiomyocyte survival and mitochondrial dynamics. Moreover, we demonstrated that CE activated AMP-activated protein kinase (AMPK) and treatment with the AMPK inhibitor, compound C, abolished the protective effects of CE on OPA1 expression and mitochondrial function. Overall, this study demonstrates that CE is effective in mitigating MIRI by modulating AMPK activation-mediated OPA1-related mitochondrial fusion.


Sign in / Sign up

Export Citation Format

Share Document