pharmacological modulation
Recently Published Documents


TOTAL DOCUMENTS

821
(FIVE YEARS 138)

H-INDEX

57
(FIVE YEARS 8)

2022 ◽  
Vol 15 (1) ◽  
pp. 81
Author(s):  
Zsigmond Máté Kovács ◽  
Csaba Dienes ◽  
Tamás Hézső ◽  
János Almássy ◽  
János Magyar ◽  
...  

Transient receptor potential melastatin 4 is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+-sensitive and permeable to monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions by regulating the membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the pharmacological modulation of TRPM4 by listing, comparing, and describing both endogenous and exogenous activators and inhibitors of the ion channel. Moreover, other strategies used to study TRPM4 functions are listed and described. These strategies include siRNA-mediated silencing of TRPM4, dominant-negative TRPM4 variants, and anti-TRPM4 antibodies. TRPM4 is receiving more and more attention and is likely to be the topic of research in the future.


Pharmacia ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 919-925
Author(s):  
Pavlo G. Bak ◽  
Igor F. Belenichev ◽  
Liudmyla I. Kucherenko ◽  
Andrei V. Abramov ◽  
Olga V. Khromylоva

Bromide 1 - (β-phenylethyl)-4-amino-1,2,4-triazolium (Hypertril) has the properties of a beta-blocker and of NO-mimetic, is assigned to the IV class of toxicity. All these effects make Hypertril a promising drug for the treatment of cardiovascular diseases. The aim of this paper was to study the cardioprotective action of Hypertril in terms of the effect on the morpho-functional parameters of the myocardium in rats with experimental chronic heart failure (CHF). CHF was modeled on 80 white outbred rats weighing 190–220g by administering doxorubicin at a cumulative dose of 15 mg/kg. Hypertril and the reference drug metoprolol succinate were administered within 30 days after CHF modeling, intragastrically at doses of 3.5 mg/kg and 15 mg/kg. Morphometric analysis of the cellular structure of the myocardium was carried out on an Axioskop microscope (Zeiss, Germany), in an automatic mode using a macro program developed in a specialized programming environment VIDAS-2.5 (Kontron Elektronik, Germany). The administration of Hypertril to animals with CHF led to an increase in the density of nuclei of cardiomyocytes, the area of myocardiocyte nuclei, an increase in the nuclear cytoplasmic ratio and an increase in the concentration of RNA in the nuclei and cytoplasm of cardiomyocytes compared with the group of untreated animals, which indicated the presence of a pronounced cardioprotective effect in the drug candidate. In terms of such indicators as the density of surviving cardiomyocytes and the content of RNA in them, the nuclear-cytoplasmic ratio of Hypertril is significantly (p < 0.05) superior to metoprolol.


Biology Open ◽  
2021 ◽  
Author(s):  
Whitney Thiel ◽  
Emma J. Esposito ◽  
Anna P. Findley ◽  
Zachary I. Blume ◽  
Diana M. Mitchell

Transcriptome analyses performed in both human and zebrafish indicate strong expression of Apoe and Apoc1 by microglia. Apoe expression by microglia is well appreciated, but Apoc1 expression has not been well-examined. PPAR/RXR and LXR/RXR receptors appear to regulate expression of the apolipoprotein gene cluster in macrophages, but a similar role in microglia in vivo has not been studied. Here, we characterized microglial expression of apoc1 in the zebrafish central nervous system (CNS) in situ and demonstrate that in the CNS, apoc1 expression is unique to microglia. We then examined the effects of PPAR/RXR and LXR/RXR modulation on microglial expression of apoc1 and apoeb during early CNS development using a pharmacological approach. Changes in apoc1 and apoeb transcripts in response to pharmacological modulation were quantified by RT-qPCR in whole heads, and in individual microglia using hybridization chain reaction (HCR) in situ hybridization. We found that expression of apoc1 and apoeb by microglia were differentially regulated by LXR/RXR and PPAR/RXR modulating compounds, respectively, during development. Our results also suggest RXR receptors could be involved in endogenous induction of apoc1 expression by microglia. Collectively, our work supports the use of zebrafish to better understand regulation and function of these apolipoproteins in the CNS.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3419
Author(s):  
Sunny Xia ◽  
Zoltán Bozóky ◽  
Michelle Di Paola ◽  
Onofrio Laselva ◽  
Saumel Ahmadi ◽  
...  

Induced Pluripotent Stem Cells (iPSCs) can be differentiated into epithelial organoids that recapitulate the relevant context for CFTR and enable testing of therapies targeting Cystic Fibrosis (CF)-causing mutant proteins. However, to date, CF-iPSC-derived organoids have only been used to study pharmacological modulation of mutant CFTR channel activity and not the activity of other disease-relevant membrane protein constituents. In the current work, we describe a high-throughput, fluorescence-based assay of CFTR channel activity in iPSC-derived intestinal organoids and describe how this method can be adapted to study other apical membrane proteins. Specifically, we show how this assay can be employed to study CFTR and ENaC channels and an electrogenic acid transporter in the same iPSC-derived intestinal tissue. This phenotypic platform promises to expand CF therapy discovery to include strategies that target multiple determinants of epithelial fluid transport.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yumin Wang ◽  
Luyan Gao ◽  
Jichao Chen ◽  
Qiang Li ◽  
Liang Huo ◽  
...  

Parkinson’s disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1528
Author(s):  
Merve Sen ◽  
Oksana Kutsyr ◽  
Bowen Cao ◽  
Sylvia Bolz ◽  
Blanca Arango-Gonzalez ◽  
...  

Rhodopsin (RHO) misfolding mutations are a common cause of the blinding disease autosomal dominant retinitis pigmentosa (adRP). The most prevalent mutation, RHOP23H, results in its misfolding and retention in the endoplasmic reticulum (ER). Under homeostatic conditions, misfolded proteins are selectively identified, retained at the ER, and cleared via ER-associated degradation (ERAD). Overload of these degradation processes for a prolonged period leads to imbalanced proteostasis and may eventually result in cell death. ERAD of misfolded proteins, such as RHOP23H, includes the subsequent steps of protein recognition, targeting for ERAD, retrotranslocation, and proteasomal degradation. In the present study, we investigated and compared pharmacological modulation of ERAD at these four different major steps. We show that inhibition of the VCP/proteasome activity favors cell survival and suppresses P23H-mediated retinal degeneration in RHOP23H rat retinal explants. We suggest targeting this activity as a therapeutic approach for patients with currently untreatable adRP.


Sign in / Sign up

Export Citation Format

Share Document