Lactose monohydrate flow characterization using shear cell method

2020 ◽  
Vol 25 (6) ◽  
pp. 686-693 ◽  
Author(s):  
Paulo José Salústio ◽  
Mafalda Machado ◽  
Telmo Nunes ◽  
José Paulo Sousa e Silva ◽  
Paulo Cardoso Costa
Author(s):  
Paulo José Salústio ◽  
Mafalda Machado ◽  
Telmo Nunes ◽  
José Paulo Sousa e Silva ◽  
Paulo Cardoso Costa

2019 ◽  
Vol 25 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Paulo José Salústio ◽  
Cláudia Inácio ◽  
Telmo Nunes ◽  
José Paulo Sousa e Silva ◽  
Paulo Cardoso Costa

Author(s):  
Paulo J. Salústio ◽  
Maria F. Monteiro ◽  
Telmo Nunes ◽  
José P. Sousa e Silva ◽  
Paulo J. Costa
Keyword(s):  

Netsu Bussei ◽  
2005 ◽  
Vol 19 (3) ◽  
pp. 147-152
Author(s):  
Tomoharu Fukazawa ◽  
Tadahiko Masaki ◽  
Toshio Itami ◽  
Yuki Watanabe

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 905-911
Author(s):  
G. Yang ◽  
D. M. Causon ◽  
D. M. Ingram
Keyword(s):  
Cut Cell ◽  

Author(s):  
V A. Vamshi Priya ◽  
G. Chandra Sekhara Rao ◽  
D. Srinivas Reddy ◽  
V. Prabhakar Reddy

The purpose of this study was to investigate the efficiency of superdisintegrants: sodium starch glycolate, croscarmellose sodium and crospovidone in promoting tablet disintegration and drug dissolution of Topiramate immediate release tablets. The efficiency of superdisintegrants was tested, by considering four concentrations, viz., like 2%, 3%, 4% and 5% in the formulations. The dissolution was carried out in USP apparatus II at 50 rpm with distilled water as a dissolution medium. The dissolution rate of the model drug topiramate was found highly dependent on the tablet disintegration, on the particle size of the superdisintegrant, on the solubility of the drug and also on the type of superdisintegrant in the dissolution medium. There was no effect of the diluent (Lactose monohydrate) on the disintegration of different concentrations of superdisintegrants. These results suggest that, as determined by the f2 metric (similarity factor), the dissolution profile of the formulation containing 4% sodium starch glycolate and lactose monohydrate as a diluent was similar to that of a marketed product.


2019 ◽  
Vol 16 (10) ◽  
pp. 931-939
Author(s):  
Marilena Vlachou ◽  
Angeliki Siamidi ◽  
Yannis Dotsikas

Background: The loop diuretic drug furosemide is widely used for the treatment of edema in various conditions, such as pulmonary, cardiac and hepatic edema, as well as cardiac infarction. Furosemide, due to its poor water solubility and low bioavailability after oral administration of conventional dosage form, is categorized as class IV in the biopharmaceutical classification system. Objective: In the case of furosemide, this release profile is responsible for various physiological problems, acute diuresis being the most serious. This adverse effect can be circumvented by the modified release of furosemide from tablet formulations compared to those forms designed for immediate release. Method: In this report, a D-optimal combined experimental design was applied for the development of furosemide containing bilayer and compression coated tablets, aiming at lowering the drug’s burst release in the acidic environment of the stomach. A D-optimal combined design was selected in order to include all requirements in one design with many levels for the factors examined. The following responses were selected as the ones reflecting better criteria for the desired drug release: dissolution at 120 min (30-40%), 300 min (60-70%) and 480 min >95%. The new formulations, suggested by the Doptimal combined design, incorporated different grades of Eudragit ® polymers (Eudragit® E100 and Eudragit® L100-55), lactose monohydrate and HPMC K15M. The dissolution profile of furosemide from these systems was probed via in vitro dissolution experiments in buffer solutions simulating the pH of the gastrointestinal tract. Results: The results indicate that the use of Eudragit® E100 in conjunction with lactose monohydrate led to 21.32-40.85 % drug release, in the gastric medium, in both compression-coated and bilayer tablets. This is lower than the release of the mainstream drug Lasix® (t=120 min, 44.5% drug release), implying longer gastric retention and drug waste minimization. Conclusion: Furosemide’s release in the intestinal environment, from compression coated tablets incorporating Eudragit® L100-55 and HPMC K15M in the inner core or one of the two layers of the bilayer tablets, was delayed, compared to Lasix®


Sign in / Sign up

Export Citation Format

Share Document