sodium starch glycolate
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 57)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Manish Khadka ◽  
Dharma Prasad Khanal ◽  
Deepti Piya Baniya ◽  
Prakash Karki ◽  
Saurav Shrestha

Orally disintegrating tablets of Furosemide were prepared, evaluated and the comparison of the action of different concentrations of disintegrants on disintegration and dissolution of the tablets were studied. Direct compression method was used to prepare the orally disintegrating tablets containing 20 mg of Furosemide. The formulation was conducted using different concentrations of crospovidone, croscarmellose and sodium starch glycolate as superdisintegrants and their interactions with Furosemide were also evaluated using FTIR.  FTIR studies using the drug and its mixtures with the excipients showed that the peaks correlate with one another which signify that there is no interaction between the drug molecule and the excipients used. The obtained results revealed that the disintegration time of ODTs were between 9 to 59 seconds. The percentage drug content of tablets in all the formulations was found between 91.51% to 106.69%, which complies with the limits established in pharmacopoeia. The in-vitro dissolution studies show maximum release of 89.47% in formulation F3 and minimum of 77.64% in formulation F12. Higher concentration of crospovidone and croscarmellose in formulations F3 and F6 showed better dissolution properties than SSG. So by varying the concentrations of superdisintegrants, oral disintegrating tablets can be formulated.


Author(s):  
Divya Jyothi

The present work is aimed to formulate the tablets containing fenugreek extract as drug by wet granulation method. Further the effect of Sodium Starch Glycolate as super disintegrant on disintegration and drug release was studied. Fenugreek extract contains mucilage which retards the disintegration of tablets and hence shows slower drug release. Hence in order to improve disintegration and thereby in vitro drug release, Sodium Starch Glycolate was used as super disintegrant. Tablet formulations were prepared without the SSG (Conventional-F1) and also with sodium starch glycolate (F2-F4) by wet granulation method. Assessment of flow properties of granules, physicochemical characterization of tablet formulations was carried out. Fenugreek is widely used for its antidiabetic activity which is attributed to mainly to the presence of an alkaloid Trigonelline. Hence in vitro release study of trigonelline was carried out which showed that the percentage release from F1 and F2 was found to be 58.12±4.49 and 99.08±0.01 respectively after 6 hrs. This study concludes that tablet formulation of fenugreek seed extracts with super disintegrants will be more desirable, advantageous and therapeutically more beneficial than incorporating the direct plant materials for the treatment of diabetes for faster onset of action.


Author(s):  
Saibabu Ch ◽  
Triveni P

Formulation research is oriented towards safety, efficacy and quick onset of action of existing drug molecule through novel concepts of drug delivery. Orally disintegrating tablets of Rizatriptan benzoate were prepared by direct compression method to provide faster relief from pain to migraine sufferers. About eleven formulations for the present study were carried out. Croscarmellose sodium, Crospovidone and Sodium starch glycolate (SSG) were used as superdisintegrants, while microcrystalline cellulose was used as diluent. The prepared batches of tablets were evaluated for weight variation, hardness, friability, wetting time, invitro dispersion time, drug content and invitro dissolution studies. The formulation containing combination of Croscarmellose sodium and Sodium starch glycolate showed rapid invitro dispersion time as compared to other formulations. The optimized formulation dispersed in 8 seconds. It also showed a higher water absorption ratio and 99.58% of drug is released within 2 minutes.


Mouth dissolving tablet disintegrates and dissolves rapidly in the saliva, within a few seconds without the need of drinking water or chewing. A mouth dissolving tablet usually dissolves in the oral cavity within 15 seconds to 3 minutes. Almotriptan malate is an anti migraine drug with bitter taste and shows hepatic metabolism. In the present work, Mouth dissolving tablets of almotriptan malate were prepared by direct compression method using sodium starch glycolate and croscarmellose sodium as superdisintegrant with a view to enhance patient compliance and to avoid gastric dysmotility which is common with migraine drugs and for fast action of drug. The prepared batches of tablets were evaluated for hardness, friability, drug content uniformity, wetting time, water-absorption ratio and in-vitro dispersion time. Short-term stability studies on the promising formulation indicated that there are no significant changes in drug content and disintegration time. Keywords: Almotriptan malate, Superdisintegrant, Sodium starch glycolate, Crosscarmellose sodium, Taste masking.


2021 ◽  
Vol 3 (01) ◽  
pp. 19-27
Author(s):  
Khusnul Milatul Khasanah ◽  
Wirasti Wirasti ◽  
Dwi Bagus Pambudi Pambudi ◽  
ST. Rahmatullah

Biji alpukat (Persea americana Mill.) dapat dikembangkan menjadi amilum biji alpukat (Persea americana Mill.) yang dapat digunakan menjadi bahan eksipien formulasi sediaan farmasi. Akan tetapi informasi terkait manfaatnya dalam tablet masih sangat terbatas penggunaannya, sehingga industri farmasi masih jarang menggunakan amilum biji alpukat sebagai alternatif pengganti bahan eksipien dari bahan sintetis superdisintegrant pada fast disintegrating tablet (FDT). Telah dibuat sediaan fast disintegrating tablet dengan variasi konsentrasi amilum biji alpukat (5%, 10% dan 15%) dan pembanding Sodium Starch Glycolate (SSG) konsentrasi 5%. Data yang didapat dianalisis secara statistik menggunakan uji one way ANOVA dan dilanjutkan ke uji tukey (Honestly Significant Difference) HSD. Hasil menunjukkan bahwa variasi konsentrasi amilum biji alpukat terdapat pengaruh pada sifat fisik granul dan sifat fisik tablet, formula III dengan konsentrasi 15% memiliki kriteria yang paling baik sebagai superdisintegrant pada tablet terdisintegrasi cepat. Perlu dilakukan modifikasi lanjutan amilum biji alpukat agar dapat digunakan sebagai superdisintegrant yang lebih efektif dalam formulasi fast disintegrating tablet pada penelitian selanjutnya.


Author(s):  
Umesh Chandra ◽  
Manish Kumar ◽  
Arun Garg ◽  
Shrestha Sharma ◽  
Pankaj Gupta

Aim: The present research work was carried out to formulate stable fixed dose combination tablets of Bilastine and Montelukast Sodium, used to treat allergic rhinitis associated with asthma and rhino-conjunctivitis on basis of pre and post post-compression parameters evaluation and drug-drug-excipients compatibility studies. Methods: Direct compression methodology was used for tablet production and final composition of drugs and excipients was optimized by evaluating pre and post compression evaluations of blend and tablets respectively. The chemical instability and stability studies were carried out using HPLC method. Results: The Evaluation of pre-compression parameters of batch F1 to F5 shows that as we increase the amount of sodium starch glycolate and colloidal silicon dioxide from F1 to F5, bulk density and tapped density increases slightly whereas the compressibility index and hausner’s ratio of tablets was shifted from excellent to good. Angle of repose shows excellent flow property from F3-F5. After evaluation of post-compression parameters from F1 to F5, there is no significant difference in diameter, thickness and average weight of tablets. The hardness of tablets was decreased slightly from F1 to F5 therefore, the % friability was found to be increased from F1 to F5 and disintegration time was found to be decreased from F1 to F5. Dissolution studies shows % release of Bilastine and Montelukast was increased towards F1 to F5 as the percentage of Sodium Starch Glycolate increases. The drug-drug-excipients compatibility shows that there is no physical and chemical incompatibility between the drug-drug-excipients at accelerated conditions. The stability studies show that % assay of long term and accelerated samples are within 100±2%. Conclusion: The optimized composition found in order to scale up the production of tablets.


Author(s):  
A. HARI OM PRAKASH RAO ◽  
R. SANTOSH KUMAR ◽  
SHAMBHAVI KANDUKURI ◽  
M. RAMYA

Objective: To synthesize, characterize and evaluate starch glycolate as a superdisintegrant in the formulation of Glipizide fast dissolving tablets by employing 23 factorial designs. Methods: Starch glycolate was prepared and its physical and micromeritic properties were performed to evaluate it. The fast dissolving tablet of Glipizide was prepared by employing starch crotonate as a superdisintegrant in different proportions in each case by direct compression method using 23 factorial design for the evaluation of tablet parameters like disintegration and dissolution efficiency in 5 min. Results: The starch glycolate prepared was found to be fine, free-flowing and amorphous. Starch glycolate exhibited good swelling in water with a swelling index (10%). The study of starch glycolate was shown by fourier transform infrared spectra (FTIR). The drug content (100±5%), hardness (3.5–4 kg/sq. cm), and friability (<0.15%) was been effective with regard to all the formulated fast dissolving tablets employing starch glycolate. The disintegration time of all the formulated tablets was found to be in the range of 13±0.015 to 180±0.014 sec. The optimized formulation F8 had the least disintegration time i.e., 13±0.015 sec. The wetting time of the tablets was found to be in the range of 8±0.015 to 95±0.013 sec. The In vitro wetting time was less (i.e., 8±0.015s) in optimized formulation F8. The water absorption ratio of the formulated tablets was found to be in the range of 75±0.012 to 150±0.014%. The percent drug dissolved in the optimized formulation F8 was found to be 99.95% in 5 min. Conclusion: Starch glycolate was an efficient superdisintegrant for fast-dissolving tablets. The disintegration and dissolution efficiency of the fast dissolving tablets of glipizide was good and depended on the concentration of superdisintegrant employed i.e., starch glycolate, sodium starch glycolate, crospovidone. The formulated fast dissolving tablets of glipizide exhibited good dissolution efficiency in 5 min which can be used for the fast therapeutic action of glipizide.


Author(s):  
Dipal M. Patel ◽  
Twinkal J. Patel ◽  
Sanjesh G Rathi ◽  
Shrenik K. Shah

The aim of present research work is to formulation and evaluates Liquisolid Compacts of Zotepine to improve solubility and dissolution rate of drug. Solubility and dissolution rate of Zotepine was increased by preparing Liquisolid Compacts of Zotepine using PEG as vehicle, Aerosil as coating agent and Avicel as adsorbent and sodium starch glycolate as super disintegrant. FTIR study was checked for possible drug excipient interaction. The hardness of all formulation was found good enough to pass the friability criteria. Hence the friability of the formulation is well within the acceptance criteria. The friability was found less than 1 in all formulations. Further, the drug content of the formulation batches F1-F8 found within acceptance range. The disintegration time of the F1-F8 batches was found less the 60 seconds. It was found that the amount of SSG is directly affecting to DT time of formulation. The F8 formulation was found stable for 1 month during stability study. Liquisolid Compacts of Zotepine were successfully developed by using PEG as vehicle, Aerosil as coating agent and Avicel as adsorbent and sodium starch glycolate as super disintegrant.


Author(s):  
R. SANTOSH KUMAR ◽  
SHAMBHAVI KANDUKURI ◽  
M. RAMYA ◽  
B. KUSUMA LATHA

Objective: To synthesize, characterize and evaluate starch valerate as a superdisintegrant in the formulation of aceclofenac fast dissolving tablets by employing 23 factorial design. Methods: Starch valerate was synthesized and its physical and micromeritic properties were performed to evaluate it. The fast dissolving tablet of aceclofenac was prepared by employing starch valerate as a superdisintegrant in different proportions in each case by direct compression method using 23 factorial design for evaluation of tablet parameters like disintegration and dissolution efficiency in 5 min. Results: The starch valerate prepared was found to be fine, amorphous and free flowing. Starch valerate exhibited good swelling in water with swelling index (125.2%). The study of starch valerate was shown by fourier transform infrared spectra (FTIR). The drug content (200±5%), hardness (3.5–4 kg/sq. cm), and friability (<0.15%) has been effective with regard to all the formulated fast dissolving tablets employing starch valerate. The disintegration time of all the formulated tablets was found to be in the range of 14±0.04 to 25.7±0.02 sec. The optimized formulation F4 had the least disintegration time i.e., 12.8±0.02 sec. The wetting time of the tablets was found to be in the range of 76±0.21 to 217±0.17s. The In vitro wetting time was less (i.e., 28±0.02s) in optimized formulation F4. The water absorption ratio of the formulated tablets was found to be in the range of 46±0.12 to 100±0.27%. The percent drug dissolved in the optimized formulation F8 was found to be 99.93% in 5 min. Conclusion: Starch valerate, when combined with sodium starch glycolate, croscarmellose sodium, with aceclofenac, was found to be an effective super disintegrant which improved the dissolution efficiency and could therefore be used in the formulation of quick dissolving tablets to provide immediate release of the contained drug within 5 min.


Sign in / Sign up

Export Citation Format

Share Document