scholarly journals Effects of friction conditions on the formation of dead metal zone in orthogonal cutting – a finite element study

2018 ◽  
Vol 22 (6) ◽  
pp. 934-952 ◽  
Author(s):  
Lei Wan ◽  
Badis Haddag ◽  
Dazhong Wang ◽  
Yong Sheng ◽  
Dongmin Yang
Author(s):  
Demeng Che ◽  
Peidong Han ◽  
Bo Peng ◽  
Kornel F. Ehmann

The understanding of the rock-cutter interaction is essential for efficient rock cutting/drilling performed with polycrystalline diamond compact (PDC) cutters in petroleum engineering and gas exploration. Finite element modeling of the rock cutting process still remains a challenge due to the complex material properties of rock, rock fracture and chip formation phenomena and large force oscillations during the dominant brittle cutting mode. A finite element study was conducted to investigate the chip formation and force responses in two-dimensional orthogonal cutting of rock. The Drucker-Prager model that incorporates a simple shear strain failure criterion was exploited to simulate the interactions between the rock and the cutter. A fully instrumented rock cutting testbed was developed to enable the measurements of the three orthogonal force components and of the uni-axial acceleration in the cutting direction along rectilinear tool-paths to evaluate the simulation results. The chip formation phenomena and force response predictions derived by the FEM simulations were in good agreement with the experimental tests.


Author(s):  
Ali Merdji ◽  
Belaid Taharou ◽  
Rajshree Hillstrom ◽  
Ali Benaissa ◽  
Sandipan Roy ◽  
...  

2020 ◽  
Vol 10 (14) ◽  
pp. 4737
Author(s):  
Chao Xu ◽  
Suli Pan

The coefficient of consolidation is traditionally considered as a constant value in soil consolidation calculations. This paper uses compression and recompression indexes to calculate the solution-dependent nonlinear compressibility, thus overconsolidation and normal consolidation are separated during the calculations. Moreover, the complex nonlinear consolidation can be described using the nonlinear compressibility and a nonlinear permeability. Then, the finite element discrete equation with consideration of the time-dependent load is derived, and a corresponding program is developed. Subsequently, a case history is conducted for verifying the proposed method and the program. The results show that the method is sufficiently accurate, indicating the necessity of considering nonlinearity for consolidation calculations. Finally, three cases are compared to reveal the importance of separating the overconsolidation and normal consolidation. Overall, this study concluded that it is inadequate to consider just one consolidation status in calculations, and that the proposed method is more reasonable for guiding construction.


Sign in / Sign up

Export Citation Format

Share Document