The Establishment of a Novel Deliverability Equation of Abnormal Pressure Gas Reservoirs Considering a Variable Threshold Pressure Drop

2013 ◽  
Vol 32 (1) ◽  
pp. 15-21 ◽  
Author(s):  
K. Wu ◽  
X. Li ◽  
P. Yang ◽  
S. Zhang
2013 ◽  
Vol 275-277 ◽  
pp. 456-461
Author(s):  
Lei Zhang ◽  
Lai Bing Zhang ◽  
Bin Quan Jiang ◽  
Huan Liu

The accurate prediction of the dynamic reserves of gas reservoirs is the important research content of the development of dynamic analysis of gas reservoirs. It is of great significance to the stable and safe production and the formulation of scientific and rational development programs of gas reservoirs. The production methods of dynamic reserves of gas reservoirs mainly include material balance method, unit pressure drop of gas production method and elastic two-phase method. To clarify the characteristics of these methods better, in this paper, we took two typeⅠwells of a constant volume gas reservoir as an example, the dynamic reserves of single well controlled were respectively calculated, and the results show that the order of the calculated volume of the dynamic reserves by using different methods is material balance method> unit pressure drop of gas production method >elastic two-phase method. Because the material balance method is a static method, unit pressure drop of gas production method and elastic two-phase method are dynamic methods, therefore, for typeⅠwells of constant volume gas reservoirs, when the gas wells reached the quasi-steady state, the elastic two-phase method is used to calculate the dynamic reserves, and when the gas wells didn’t reach the quasi-steady state, unit pressure drop of gas production method is used to calculate the dynamic reserves. The conclusion has some certain theoretical value for the prediction of dynamic reserves for constant volume gas reservoirs.


2003 ◽  
Vol 125 (6) ◽  
pp. 823-831 ◽  
Author(s):  
S. Naire ◽  
O. E. Jensen

We consider a simple physical model for the reopening of a collapsed lung airway involving the unsteady propagation of a long bubble of air, driven at a prescribed flow-rate, into a liquid-filled channel formed by two flexible membranes that are held under large longitudinal tension and are confined between two parallel rigid plates. This system is described theoretically using an asymptotic approximation, valid for uniformly small membrane slopes, which reduces to a fourth-order nonlinear evolution equation for the channel width ahead of the bubble tip, from which the time-evolution of the bubble pressure pb* and bubble speed may be determined. The model shows that there can be a substantial delay between the time at which the bubble starts to grow in volume and the time at which its tip starts to move. Under certain conditions, the start of the bubble’s motion is accompanied by a transient overshoot in pb*, as seen previously in experiment; the model predicts that the overshoot is greatest in narrow channels when the bubble is driven with a large volume flux. It is also shown how the threshold pressure for steady bubble propagation in wide channels has distinct contributions from the capillary pressure drop across the bubble tip and viscous dissipation in the channel ahead of the bubble.


Cryogenics ◽  
2019 ◽  
Vol 104 ◽  
pp. 102994 ◽  
Author(s):  
Fushou Xie ◽  
Yanzhong Li ◽  
Xinbao Wang ◽  
Erfeng Chen ◽  
Lei Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuan Xu ◽  
Xizhe Li ◽  
Yong Hu ◽  
Qingyan Mei ◽  
Yu Shi ◽  
...  

AbstractThe development of water drive gas reservoirs (WDGRs) with fractures or strong heterogeneity is severely influenced by water invasion. Accurately simulating the rules of water invasion and drainage gas recovery countermeasures in fractured WDGRs, thereby revealing the mechanism of water invasion and an appropriate development strategy, is important for formulating water management measures and enhancing the recovery of gas reservoirs. In this work, physical simulation methods were proposed to gain a better understanding of water invasion and to optimize the water control of fractured WDGRs. Five groups of experiments were designed and conducted to probe the impacts of the distance between the fractures and the gas well, the drainage position, the drainage timing and the aquifer size on the water invasion and production performance of a gas reservoir. The gas and water production and the internal pressure drop were monitored in real time during the experiments. Based on the above experimental works, a theoretical analysis was conducted to quantitatively evaluate the performance of the gas reservoir recovery via the gas well production performance, water invasion, dynamic pressure drop and residual gas and water distribution analysis. The results show that when the fracture scale was appropriate, a gas well drilled close to a fracture (Experiment 1-3) or a high-permeability formation could also produce gas and achieve drainage efficiently. The recovery factor of Experiment 1-3 reached 62.5%, which was 24.6% and 21.1% higher than those of Experiments 1-1 and 1-2, respectively, which had wells drilled in low-permeability areas. Draining water near an aquifer can effectively inhibit water invasion during the early stage of gas recovery. The setup in Experiment 2-1 effectively inhibited water invasion and avoided the formation of water-sealed volumes of gas to recover 30% more gas than recovered with that of Experiment 1-1 without drainage wells. A shorter distance between the drainage well and the aquifer increased the drainage capacity and decreased the gas production capacity, respectively (Well 2 at Point A vs Point B). A larger aquifer had a lower gas recovery, which reduced the economic benefit. For example, due to an infinitely large aquifer, the reserves in Experiment 4-1 were developed by a single well, the gas recovery was only 33.4%. These research results are expected to be beneficial for the preparation of development plans and the optimization of water control measures for WDGRs.


Sign in / Sign up

Export Citation Format

Share Document