Well Pattern Optimization Method for Tight Gas Reservoirs Based on Threshold Pressure Gradient

Author(s):  
Ya Li ◽  
Ji-ping Wang ◽  
Ji Zhang ◽  
Jing-zhe Guo
2014 ◽  
Vol 934 ◽  
pp. 143-149
Author(s):  
Chun Cheng Yang ◽  
Hong Jun Yin ◽  
Tang Qian Zhu ◽  
Lei Wang

Based on the equivalent radius model and superposition potential, a productivity model for ultra-low permeability tight gas reservoirs was developed, which considered the influence of the threshold pressure gradient and the variable mass flow in fractures, and pressure loss inside the wellbore. With examples for capacity sensitive factors are analyzed. The results show that the threshold pressure gradient must be accounted to evaluate the productivity in ultra-low permeability tight gas reservoirs; after considering wellbore pressure loss; close toe fractures inflow velocity segment has been reduced; the larger matrix permeability, the greater the optimum fracture conductivity; When the number of fracture is more, the greater the impact on the capacity of the fracture angle. The research results provide a scientific basis for the design of multi-fractured horizontal wells in the ultra-low permeability tight gas reservoirs.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Renyi Cao ◽  
Liyou Ye ◽  
Qihong Lei ◽  
Xinhua Chen ◽  
Y. Zee Ma ◽  
...  

Some tight sandstone gas reservoirs contain mobile water, and the mobile water generally has a significant impact on the gas flowing in tight pores. The flow behavior of gas and water in tight pores is different than in conventional formations, yet there is a lack of adequate models to predict the gas production and describe the gas-water flow behaviors in water-bearing tight gas reservoirs. Based on the experimental results, this paper presents mathematical models to describe flow behaviors of gas and water in tight gas formations; the threshold pressure gradient, stress sensitivity, and relative permeability are all considered in our models. A numerical simulator using these models has been developed to improve the flow simulation accuracy for water-bearing tight gas reservoirs. The results show that the effect of stress sensitivity becomes larger as water saturation increases, leading to a fast decline of gas production; in addition, the nonlinear flow of gas phase is aggravated with the increase of water saturation and the decrease of permeability. The gas recovery decreases when the threshold pressure gradient (TPG) and stress sensitivity are taken into account. Therefore, a reasonable drawdown pressure should be set to minimize the damage of nonlinear factors to gas recovery.


2014 ◽  
Vol 20 ◽  
pp. 155-160 ◽  
Author(s):  
Jingchen Ding ◽  
Shenglai Yang ◽  
Xiangrong Nie ◽  
Zhilin Wang

2020 ◽  
Vol 17 (5) ◽  
pp. 1356-1369
Author(s):  
Atif Zafar ◽  
Yu-Liang Su ◽  
Lei Li ◽  
Jin-Gang Fu ◽  
Asif Mehmood ◽  
...  

Abstract Threshold pressure gradient has great importance in efficient tight gas field development as well as for research and laboratory experiments. This experimental study is carried out to investigate the threshold pressure gradient in detail. Experiments are carried out with and without back pressure so that the effect of pore pressure on threshold pressure gradient may be observed. The trend of increasing or decreasing the threshold pressure gradient is totally opposite in the cases of considering and not considering the pore pressure. The results demonstrate that the pore pressure of tight gas reservoirs has great influence on threshold pressure gradient. The effects of other parameters like permeability and water saturation, in the presence of pore pressure, on threshold pressure gradient are also examined which show that the threshold pressure gradient increases with either a decrease in permeability or an increase in water saturation. Two new correlations of threshold pressure gradient on the basis of pore pressure and permeability, and pore pressure and water saturation, are also introduced. Based on these equations, new models for tight gas production are proposed. The gas slip correction factor is also considered during derivation of this proposed tight gas production models. Inflow performance relationship curves based on these proposed models show that production rates and absolute open flow potential are always be overestimated while ignoring the threshold pressure gradients.


Sign in / Sign up

Export Citation Format

Share Document