Applicability of the flowing material balance method to heterogeneous reservoirs

Author(s):  
Guofeng Han
2014 ◽  
Vol 997 ◽  
pp. 868-872
Author(s):  
Quan Hua Huang ◽  
Huai Zhong Wen ◽  
Li Zhang ◽  
Tian Song

Formation pressure is an important symbol of driving energy and the key problem of gas reservoir development. Therefore, the formation pressure’s evaluation is a very important work. Due to the invasion of edge-bottom water, using conventional "flow" material balance method to calculate the formation pressure is no longer applicable. According to the theory of reservoir pressure calculation based on flowing material balance method, we established a improved method to calculate the pressure of water drive gas reservoir and verified it by an example. The results show that: edge and bottom water intrusion has obvious effect on the calculation of formation pressure; after considering the influence of water drive, the formation pressure’s calculation results increased, as a consequence the formation pressure’s decreasing range reduced. This research’s result has important reference value for improving the precision of water drive gas reservoir’s formation pressure.


2019 ◽  
Vol 38 (2) ◽  
pp. 519-532
Author(s):  
Guofeng Han ◽  
Min Liu ◽  
Qi Li

This paper presents an improved flowing material balance method for unconventional gas reservoirs. The flowing material balance method is widely used to estimate geological reserves. However, in the case of the unconventional gas reservoirs, such as coalbed methane reservoirs and shale gas reservoirs, the conventional method is inapplicable due to the gas adsorption on the organic pore surface. In this study, a material balance equation considering adsorption phase volume is presented and a new total compressibility is defined. A pseudo-gas reservoir is simulated and the results were compared with the existing formulations. The results show that the proposed formulation can accurately get the geological reserves of adsorbed gas reservoirs. Furthermore, the results also show that the volume of the adsorbed phase has a significant influence on the analysis, and it can only be ignored when the Langmuir volume is negligible.


2021 ◽  
Author(s):  
Jie He ◽  
Xiangdong Guo ◽  
Hongjun Cui ◽  
Kaiyu Lei ◽  
Yanyun Lei ◽  
...  

Abstract The determination of dynamic reserves of gas well is an important basis for rational production allocation and development of a single well. The commonly used flow material balance method (FMB method) uses the slope of the curve of wellhead pressure and cumulative production after stable production of gas well to replace the slope of the curve of average formation pressure and cumulative production to calculate the controlled reserves of single well. However, based on the theoretical calculation, the FMB method ignores the change of natural gas compression coefficient, viscosity and deviation coefficient in the production process. After considering these changes, the slope of the curve of the relationship between bottom hole pressure and cumulative production and the slope of the curve of the relationship between average formation pressure and cumulative production are not equal. In order to solve this problem, the influence of pressure on each parameter is considered, and the equation of modified flowing material balance method is derived. The application of Yan'an gas field in Ordos Basin shows that: compared with the results of the material balance method, the result of the flow material balance method is smaller, and the maximum error is 58.816%. The consequence of the modified mobile material balance method is more accurate, and the average error is 2.114%, which has good applicability. This study provides technical support for an accurate evaluation of dynamic reserves of tight gas wells in Yan'an gas field, and has important guiding significance for economic and efficient development of gas reservoir.


Author(s):  
Tri Handoyo ◽  
Suryo Prakoso

<em>The success of the discovery of new structure Akasia Bagus with potential L layer in 2009 at PT Pertamina EP's Jatibarang Field was followed up by the drilling infill wells with Plan of Development (POD) mechanism which is currently in the process of drilling the last well. The basis of the L layer hydrocarbon calculation in place on the POD is a static analysis. The wells currently produced are still able to flow with natural flow and enough production data since 2009 this structure was found. This study will present an analysis of production in the L layer of Akasia Bagus structure for Original Oil In Place (OOIP) updates using the conventional material balance method and then carry out the best development strategy to optimize oil production. Economic analysis is also carried out for reference in making decision on which scenario to choose. The conventional material balance method gets an OOIP value of 17.36 MMSTB, with the drive energy ratio being 5:3:2 for water influx : fluid expansion : gas cap expansion. Three (3) production optimization scenarios were analyzed, the results showed that the addition of 2 infill wells reached Recovery Factot (RF) of oil up to 23% of OOIP, minimal water production and attractive economic results.</em>


2019 ◽  
Vol 6 (5) ◽  
pp. 509-516 ◽  
Author(s):  
Hedong Sun ◽  
Hongyu Wang ◽  
Songbai Zhu ◽  
Haifeng Nie ◽  
Yang Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document