Analysis of Gas Production Data Using Flowing Material Balance Method

Author(s):  
S. Mohammed ◽  
G.S. Enty
Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Lixia Zhang ◽  
Yingxu He ◽  
Chunqiu Guo ◽  
Yang Yu

Abstract Determination of gas in place (GIP) is among the hotspot issues in the field of oil/gas reservoir engineering. The conventional material balance method and other relevant approaches have found widespread application in estimating GIP of a gas reservoir or well-controlled gas reserves, but they are normally not cost-effective. To calculate GIP of abnormally pressured gas reservoirs economically and accurately, this paper deduces an iteration method for GIP estimation from production data, taking into consideration the pore shrinkage of reservoir rock and the volume expansion of irreducible water, and presents a strategy for selecting an initial iteration value of GIP. The approach, termed DMBM-APGR (dynamic material balance method for abnormally pressured gas reservoirs) here, is based on two equations: dynamic material balance equation and static material balance equation for overpressured gas reservoirs. The former delineates the relationship between the quasipressure at bottomhole pressure and the one at average reservoir pressure, and the latter reflects the relationship between average reservoir pressure and cumulative gas production, both of which are rigidly demonstrated in the paper using the basic theory of gas flow through porous media and material balance principle. The method proves effective with several numerical cases under various production schedules and a field case under a variable rate/variable pressure schedule, and the calculation error of GIP does not go beyond 5% provided that the production data are credible. DMBM-APGR goes for gas reservoirs with abnormally high pressure as well as those with normal pressure in virtue of its strict theoretical foundation, which not only considers the compressibilities of rock and bound water, but also reckons with the changes in production rate and variations of gas properties as functions of pressure. The method may serve as a valuable and reliable tool in determining gas reserves.


2014 ◽  
Vol 997 ◽  
pp. 868-872
Author(s):  
Quan Hua Huang ◽  
Huai Zhong Wen ◽  
Li Zhang ◽  
Tian Song

Formation pressure is an important symbol of driving energy and the key problem of gas reservoir development. Therefore, the formation pressure’s evaluation is a very important work. Due to the invasion of edge-bottom water, using conventional "flow" material balance method to calculate the formation pressure is no longer applicable. According to the theory of reservoir pressure calculation based on flowing material balance method, we established a improved method to calculate the pressure of water drive gas reservoir and verified it by an example. The results show that: edge and bottom water intrusion has obvious effect on the calculation of formation pressure; after considering the influence of water drive, the formation pressure’s calculation results increased, as a consequence the formation pressure’s decreasing range reduced. This research’s result has important reference value for improving the precision of water drive gas reservoir’s formation pressure.


PETRO ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 135
Author(s):  
Yogie Seto S.W ◽  
Onnie Ridaliani ◽  
Lestari Lestari

<p><em>YS reservoir has </em><em>data of gas initial in place (GIIP)</em><em> with a volumetric method of 3,476 B</em><em>scf</em><em>. </em><em>Because of improvement of data, GIIP</em><em> </em><em>can be</em><em> </em><em>evaluated using material balance method</em><em>.</em><em> Then the production of wet gas will be forcasted with plateu rate of 40 Mscf/d. </em><em>The PV</em><em>T</em><em> data that needs to be calculated in this study is the gas </em><em>and water </em><em>compressibility factor and the formation volume factor </em><em>each</em><em> year. In determining the type </em><em>of drive mechanism</em><em>, a plot of P / Z versus cumulative gas production is carried out, from the analysis</em><em>, </em><em>the type of </em><em>drive mechanism is</em><em> water drive, it is necessary to calculate the water influx, the method used is the </em><em>Van Everdengen-Hurst</em><em> method</em><em>. </em><em>After all the required parameters are available, the calculation of the initial gas in place will be calculated, the method used is the material balance method and the straight line material balance method.</em><em> </em><em>The results of the</em><em> initial gas in place</em><em> calculation using the material balance and straight line material balance methods are </em><em>3,430 Bscf and 3,428 Bscf</em><em>. If the results of the material balance method and the straight line material balance method are compared with </em><em>available GIIP volumetric method data</em><em>, the percent difference is </em><em>1,32</em><em>% and </em><em>1,37</em><em>%. It can be said that </em><em>GIIP result using </em><em>the material balance method and the straight line material balance method</em><em> </em><em>is accurate because after being evaluated using </em><em>volumetric</em><em> method, it only has a small percentage difference.</em><em> </em><em>Then from </em><em>calculation, </em><em>recovery factor </em><em>are</em><em> </em><em>67,43% using gas initial in place of straight line material balance method. With remaining reserve of 16,532 MMscf, the time of production plateu with 40 Mscf/d is 12,40 months.</em></p>


2019 ◽  
Vol 38 (2) ◽  
pp. 519-532
Author(s):  
Guofeng Han ◽  
Min Liu ◽  
Qi Li

This paper presents an improved flowing material balance method for unconventional gas reservoirs. The flowing material balance method is widely used to estimate geological reserves. However, in the case of the unconventional gas reservoirs, such as coalbed methane reservoirs and shale gas reservoirs, the conventional method is inapplicable due to the gas adsorption on the organic pore surface. In this study, a material balance equation considering adsorption phase volume is presented and a new total compressibility is defined. A pseudo-gas reservoir is simulated and the results were compared with the existing formulations. The results show that the proposed formulation can accurately get the geological reserves of adsorbed gas reservoirs. Furthermore, the results also show that the volume of the adsorbed phase has a significant influence on the analysis, and it can only be ignored when the Langmuir volume is negligible.


INSIST ◽  
2018 ◽  
Vol 3 (2) ◽  
pp. 154
Author(s):  
Panca Suci Widiantoro ◽  
Astra Agus Pramana ◽  
Putu Suarsana ◽  
Anis N Utami

Production optimization in mature field water drive gas reservoir is not easy especially when water already breakthrough in producing wells. An integrated reservoir study is needed to get reliable strategy to optimize production of water drive gas reservoir.   This research presents the integrated reservoir study of Lower Menggala (LM) Gas Field which is located Central Sumatera Basin, Riau Province. LM had been produced since 1997, current RF are 55%, which is quite high for water drive gas reservoir. The current gas rate production is about 1.97 MMscfd with high water production around 4250 BWPD, consequently some of wells suffered liquid loading problem   This research comprises of well performance analysis, estimate OGIP, aquifer strength of the reservoir by using conventional material balance method and modern production analysis method then conduct dynamic reservoir simulation to identify the best strategy to optimize gas production. Economic analysis also be performed to guide in making decision which scenario will be selected. DST analysis on DC-01 well defined reservoir parameter, boundary and deliverability which are P*= 2520 psia, k= 229 mD, Total skin= 8, detected sealing fault with distance 175 m, and AOF 45 MMscfd. Conventional material balance method gave OGIP 22.7 BScf, aquifer strength 34 B/D/Psi, whereas modern production analysis estimated OGIP 22.35 BScf, aquifer strength 34 B/D/psi. Those two method shows  good consistency with OGIP  volumetric calculation with discrepancy OGIP value +/- 1%. Six (6) scenario of production optimization has been analyzed, the result shows that work over in two wells and drilling of  1 infill well (case 6) achieve gas recovery factor up to 75.2%, minimal water production and attractive economic result


2021 ◽  
Author(s):  
Jie He ◽  
Xiangdong Guo ◽  
Hongjun Cui ◽  
Kaiyu Lei ◽  
Yanyun Lei ◽  
...  

Abstract The determination of dynamic reserves of gas well is an important basis for rational production allocation and development of a single well. The commonly used flow material balance method (FMB method) uses the slope of the curve of wellhead pressure and cumulative production after stable production of gas well to replace the slope of the curve of average formation pressure and cumulative production to calculate the controlled reserves of single well. However, based on the theoretical calculation, the FMB method ignores the change of natural gas compression coefficient, viscosity and deviation coefficient in the production process. After considering these changes, the slope of the curve of the relationship between bottom hole pressure and cumulative production and the slope of the curve of the relationship between average formation pressure and cumulative production are not equal. In order to solve this problem, the influence of pressure on each parameter is considered, and the equation of modified flowing material balance method is derived. The application of Yan'an gas field in Ordos Basin shows that: compared with the results of the material balance method, the result of the flow material balance method is smaller, and the maximum error is 58.816%. The consequence of the modified mobile material balance method is more accurate, and the average error is 2.114%, which has good applicability. This study provides technical support for an accurate evaluation of dynamic reserves of tight gas wells in Yan'an gas field, and has important guiding significance for economic and efficient development of gas reservoir.


2013 ◽  
Vol 275-277 ◽  
pp. 456-461
Author(s):  
Lei Zhang ◽  
Lai Bing Zhang ◽  
Bin Quan Jiang ◽  
Huan Liu

The accurate prediction of the dynamic reserves of gas reservoirs is the important research content of the development of dynamic analysis of gas reservoirs. It is of great significance to the stable and safe production and the formulation of scientific and rational development programs of gas reservoirs. The production methods of dynamic reserves of gas reservoirs mainly include material balance method, unit pressure drop of gas production method and elastic two-phase method. To clarify the characteristics of these methods better, in this paper, we took two typeⅠwells of a constant volume gas reservoir as an example, the dynamic reserves of single well controlled were respectively calculated, and the results show that the order of the calculated volume of the dynamic reserves by using different methods is material balance method> unit pressure drop of gas production method >elastic two-phase method. Because the material balance method is a static method, unit pressure drop of gas production method and elastic two-phase method are dynamic methods, therefore, for typeⅠwells of constant volume gas reservoirs, when the gas wells reached the quasi-steady state, the elastic two-phase method is used to calculate the dynamic reserves, and when the gas wells didn’t reach the quasi-steady state, unit pressure drop of gas production method is used to calculate the dynamic reserves. The conclusion has some certain theoretical value for the prediction of dynamic reserves for constant volume gas reservoirs.


Author(s):  
Tri Handoyo ◽  
Suryo Prakoso

<em>The success of the discovery of new structure Akasia Bagus with potential L layer in 2009 at PT Pertamina EP's Jatibarang Field was followed up by the drilling infill wells with Plan of Development (POD) mechanism which is currently in the process of drilling the last well. The basis of the L layer hydrocarbon calculation in place on the POD is a static analysis. The wells currently produced are still able to flow with natural flow and enough production data since 2009 this structure was found. This study will present an analysis of production in the L layer of Akasia Bagus structure for Original Oil In Place (OOIP) updates using the conventional material balance method and then carry out the best development strategy to optimize oil production. Economic analysis is also carried out for reference in making decision on which scenario to choose. The conventional material balance method gets an OOIP value of 17.36 MMSTB, with the drive energy ratio being 5:3:2 for water influx : fluid expansion : gas cap expansion. Three (3) production optimization scenarios were analyzed, the results showed that the addition of 2 infill wells reached Recovery Factot (RF) of oil up to 23% of OOIP, minimal water production and attractive economic results.</em>


Sign in / Sign up

Export Citation Format

Share Document