Seismic Intensity Measures and Fragility Analysis for Subway Stations Subjected to Near-fault Ground Motions with Velocity Pulses

Author(s):  
Chengming Zhang ◽  
Mi Zhao ◽  
Zilan Zhong ◽  
Xiuli Du
2019 ◽  
Vol 23 (7) ◽  
pp. 1350-1366 ◽  
Author(s):  
Yikun Qiu ◽  
Changdong Zhou ◽  
Siha A ◽  
Guangwei Zhang

Ground motion intensity measures are of great importance for the seismic design of structures. A well-chosen intensity measure will reduce the detailed ground motion record selection effort for the nonlinear dynamic structural analyses. In this article, a spectral-acceleration-based combination-type earthquake intensity measure is presented. This intensity measure considers the higher modes effect and period elongation effect due to nonlinear deformation at the same time. The modal mass participation factors are determined to take weighting coefficients and the product of elastic first-mode period T1 and a constant C is expressed to represent the elongated period. Therefore, the proposed intensity measure is a combination of earthquake ground motion characteristics, elastic structural responses, higher modes participation, and the period elongation effect due to inelastic structural behaviors. Four three-dimensional models of reinforced concrete stack-like structures including a 240 m-high chimney, a 180 m-high chimney, a 120 m-high chimney, and a 42.3 m-high water tower are established and analyzed in ABAQUS to investigate the correlation between the intensity measure and the maximum curvatures under 44 far-field ground motions and 28 near-fault ground motions with a pulse-like effect. With the optimal vibration modes and the proper period elongation coefficient, the efficiency of the introduced intensity measure is compared with the other 15 intensity measures. The results indicate that the proposed intensity measure is believed to be a good choice for high-rise stack-like structures, especially under the near-fault ground motions with pulse-like effect.


2006 ◽  
Vol 10 (2) ◽  
pp. 105-112 ◽  
Author(s):  
In-Kil Choi ◽  
Young-Sun Choun ◽  
Seong-Moon Ahn ◽  
Jeong-Moon Seo

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 3655-3666
Author(s):  
Sima Mashhadi ◽  
Farshad Homaei ◽  
Azita Asadi ◽  
Hamed Tajammolian

2013 ◽  
Vol 28 (10) ◽  
pp. 780-795 ◽  
Author(s):  
Hao Li ◽  
Wei-Jian Yi ◽  
Xian-Xun Yuan

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hanbo Zhu ◽  
Changqing Miao

In the fragility analysis, researchers mostly chose and constructed seismic intensity measures (IMs) according to past experience and personal preference, resulting in large dispersion between the sample of engineering demand parameter (EDP) and the regression function with IM as the independent variable. This problem needs to be solved urgently. Firstly, the existing 46 types of ground motion intensity measures were taken as a candidate set, and the composite intensity measures (IMs) based on machine learning methods were selected and constructed. Secondly, the modified Park–Ang damage index was taken as EDP, and the symbolic regression method was used to fit the functional relationship between the composite intensity measures (CIMs) and EDP. Finally, the probabilistic seismic demand analysis (PSDA) and seismic fragility analysis were performed by the cloud-stripe method. Taking the pier of a three-span continuous reinforced concrete hollow slab bridge as an example, a nonlinear finite element model was established for vulnerability analysis. And the composite IM was compared with the linear composite IM constructed by Kiani, Lu Dagang, and Liu Tingting. The functions of them were compared. The analysis results indicated that the standard deviation of the composite IM fragility curve proposed in this paper is 60% to 70% smaller than the other composite indicators which verified the efficiency, practicality, proficiency, and sufficiency of the proposed machine learning and symbolic regression fusion algorithms in constructing composite IMs.


Sign in / Sign up

Export Citation Format

Share Document