Ground Motion Correlations from Recorded Mexican Intermediate-depth, Intraslab Earthquakes

Author(s):  
Miguel A. Jaimes ◽  
Gabriel Candia ◽  
Alhelí S. López-Castañeda ◽  
Jorge Macedo
2008 ◽  
Vol 6 (3) ◽  
pp. 367-388 ◽  
Author(s):  
Vladimir Sokolov ◽  
Klaus-Peter Bonjer ◽  
Friedemann Wenzel ◽  
Bogdan Grecu ◽  
Mircea Radulian

2019 ◽  
Vol 91 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Michael Everett Mann ◽  
Geoffrey A. Abers

Abstract The 24 January 2016 Iniskin, Alaska earthquake, at Mw 7.1 and 111 km depth, is the largest intermediate‐depth earthquake felt in Alaska, with recorded accelerations reaching 0.2g near Anchorage. Ground motion from the Iniskin earthquake is underpredicted by at least an order of magnitude near Anchorage and the Kenai Peninsula, and is similarly overpredicted in the back‐arc north and west of Cook Inlet. This is in strong contrast to the 30 November 2018 earthquake near Anchorage that was also Mw 7.1 but only 48 km deep. The Anchorage earthquake signals show strong distance decay and are generally well predicted by ground‐motion prediction equations. Smaller intermediate‐depth earthquakes (depth>70  km and 3<M<6.4) with hypocenters near the Iniskin mainshock show similar patterns in ground shaking as the Iniskin earthquake, indicating that the shaking pattern is due to path effects and not the source. The patterns indicate a first‐order role for mantle attenuation in the spatial variability of strong motion. In addition, along‐slab paths appear to be amplified by waveguide effects due to the subduction of crust at >1  Hz; the Anchorage and Kenai regions are particularly susceptible to this amplification due to their fore‐arc position. Both of these effects are absent in the 2018 Anchorage shaking pattern, because that earthquake is shallower and waves largely propagate in the upper‐plate crust. Basin effects are also present locally, but these effects do not explain the first‐order amplitude variations. These analyses show that intermediate‐depth earthquakes can pose a significant shaking hazard, and the pattern of shaking is strongly controlled by mantle structure.


2019 ◽  
Vol 91 (1) ◽  
pp. 142-152 ◽  
Author(s):  
Morgan P. Moschetti ◽  
Eric M. Thompson ◽  
John Rekoske ◽  
Michael G. Hearne ◽  
Peter M. Powers ◽  
...  

Abstract We measure pseudospectral and peak ground motions from 44 intermediate‐depth Mw≥4.9 earthquakes in the Cook Inlet region of southern Alaska, including those from the 2018 Mw 7.1 earthquake near Anchorage, to identify regional amplification features (0.1–5  s period). Ground‐motion residuals are computed with respect to an empirical ground‐motion model for intraslab subduction earthquakes, and we compute bias, between‐, and within‐event terms through a linear mixed‐effects regression. Between‐event residuals are analyzed to assess the relative source characteristics of the Cook Inlet earthquakes and suggest a difference in the scaling of the source with depth, relative to global observations. The within‐event residuals are analyzed to investigate regional amplification, and various spatial patterns manifest, including correlations of amplification with depth of the Cook Inlet basin and varying amplifications east and west of the center of the basin. Three earthquake clusters are analyzed separately and indicate spatial amplification patterns that depend on source location and exhibit variations in the depth scaling of long‐period basin amplification. The observations inform future seismic hazard modeling efforts in the Cook Inlet region. More broadly, they suggest a greater complexity of basin and regional amplification than is currently used in seismic hazard analyses.


Sign in / Sign up

Export Citation Format

Share Document