Ground‐Motion Amplification in Cook Inlet Region, Alaska, from Intermediate‐Depth Earthquakes, Including the 2018 Mw 7.1 Anchorage Earthquake

2019 ◽  
Vol 91 (1) ◽  
pp. 142-152 ◽  
Author(s):  
Morgan P. Moschetti ◽  
Eric M. Thompson ◽  
John Rekoske ◽  
Michael G. Hearne ◽  
Peter M. Powers ◽  
...  

Abstract We measure pseudospectral and peak ground motions from 44 intermediate‐depth Mw≥4.9 earthquakes in the Cook Inlet region of southern Alaska, including those from the 2018 Mw 7.1 earthquake near Anchorage, to identify regional amplification features (0.1–5  s period). Ground‐motion residuals are computed with respect to an empirical ground‐motion model for intraslab subduction earthquakes, and we compute bias, between‐, and within‐event terms through a linear mixed‐effects regression. Between‐event residuals are analyzed to assess the relative source characteristics of the Cook Inlet earthquakes and suggest a difference in the scaling of the source with depth, relative to global observations. The within‐event residuals are analyzed to investigate regional amplification, and various spatial patterns manifest, including correlations of amplification with depth of the Cook Inlet basin and varying amplifications east and west of the center of the basin. Three earthquake clusters are analyzed separately and indicate spatial amplification patterns that depend on source location and exhibit variations in the depth scaling of long‐period basin amplification. The observations inform future seismic hazard modeling efforts in the Cook Inlet region. More broadly, they suggest a greater complexity of basin and regional amplification than is currently used in seismic hazard analyses.

2017 ◽  
Vol 33 (2) ◽  
pp. 481-498 ◽  
Author(s):  
Julian J. Bommer ◽  
Peter J. Stafford ◽  
Benjamin Edwards ◽  
Bernard Dost ◽  
Ewoud van Dedem ◽  
...  

The potential for building damage and personal injury due to induced earthquakes in the Groningen gas field is being modeled in order to inform risk management decisions. To facilitate the quantitative estimation of the induced seismic hazard and risk, a ground motion prediction model has been developed for response spectral accelerations and duration due to these earthquakes that originate within the reservoir at 3 km depth. The model is consistent with the motions recorded from small-magnitude events and captures the epistemic uncertainty associated with extrapolation to larger magnitudes. In order to reflect the conditions in the field, the model first predicts accelerations at a rock horizon some 800 m below the surface and then convolves these motions with frequency-dependent nonlinear amplification factors assigned to zones across the study area. The variability of the ground motions is modeled in all of its constituent parts at the rock and surface levels.


2017 ◽  
Vol 33 (3) ◽  
pp. 837-856 ◽  
Author(s):  
Özkan Kale ◽  
Sinan Akkar

We propose a methodology that can be useful to the hazard expert in building ground-motion logic trees to capture the center and range of ground-motion amplitudes. The methodology can be used to identify a logic-tree structure and weighting scheme that prevents the dominancy of a specific ground-motion model. This strategy can be useful for regional probabilistic seismic hazard since logic-trees biased by a specific ground-motion predictive model (GMPE) may cause disparities in the seismic hazard for regions represented by large number of sites with complex seismic features. The methodology first identifies a suit of candidate ground-motion prediction equations that can cover the center, body and range of estimated ground motions. The GMPE set is then used for establishing alternative logic-trees composed of different weighting schemes to identify the one(s) that would not be biased towards a particular GMPE due to its sensitivity to the weights. The proposed methodology utilizes visual and statistical tools to assess the ground motion distributions over large areas that makes it more practical for regional hazard studies.


Author(s):  
Li Xuejing ◽  
Weijin Xu ◽  
Mengtan Gao

ABSTRACT Arias intensity (IA), as an important seismic parameter, which contains the information of amplitude, frequencies, and duration of ground motion, plays a crucial role in characterizing seismic hazard such as earthquake-induced landslides. In this article, we conducted probabilistic seismic hazard analysis (PSHA) based on IA in China’s north–south seismic belt. We adopted the seismic sources and seismicity parameters used in the fifth generation of the Seismic Ground Motion Parameter Zoning Map of China, and two ground-motion model of IA. The results show that the values of IA are greater than 0.11 m/s in most regions of the north–south seismic belt. The provincial capital cities and most prefecture-level cities in the seismic zone are located in the region with IA-values greater than 0.32 m/s. The values of IA are above 0.54 m/s in the region around the main fault zone. This means that the north–south seismic belt is prone to extremely high-seismic hazard, particularly earthquake-induced landslides. Therefore, it is important to strengthen the evaluation and prevention of earthquake-induced landslides in this area. As we have found significant differences in the values of IA calculated from different ground-motion model, it is necessary to study the ground-motion model of IA for the western geological environment of China. In addition, the PSHA based on IA gives more consideration to the influence of large earthquakes than that based on peak ground acceleration. Therefore, IA plays an important role in seismic design of major engineering projects. The results of this article are of great scientific significance for understanding the seismic hazard of the north–south seismic belt.


2021 ◽  
pp. 875529302098802
Author(s):  
Iason Grigoratos ◽  
Paolo Bazzurro ◽  
Ellen Rathje ◽  
Alexandros Savvaidis

In the past decade, Oklahoma has experienced unprecedented seismicity rates, following an increase in the volumes of wastewater that are being disposed underground. In this article, we perform a probabilistic assessment of the time-dependent seismic hazard in Oklahoma and incorporate these results into an integrated seismic risk model to assess the evolution of the statewide economic losses, including a conservative forecast through 2030. Our risk model employs an injection-driven earthquake rate model, a region-specific ground motion model, a recent Vs30 map, HAZUS exposure data and updated vulnerability curves for both structural and nonstructural elements, and contents. The calculations are performed using a stochastic Monte Carlo–based approach implemented in the OpenQuake engine. The resulting seismic hazard maps illustrate the incompatibility of the regional seismic provisions with the current seismicity. In 2015, in particular, the induced seismic hazard in several places in Oklahoma was higher than along the San Andreas fault. During the peak of seismicity in 2015, the seismic risk was 275 times higher than the background level, with the vast majority of losses originating from damages to nonstructural elements and contents. Our direct economic loss estimates are in reasonable agreement with the paid insurance claims, but show significant sensitivity to the ground motion model selection. The proposed risk model, with possible regular updates on the seismicity rate forecast, can help stakeholders define acceptable production levels.


2021 ◽  
pp. 875529302110246
Author(s):  
Mohamed M Talaat ◽  
Timothy J Graf ◽  
Abhinav Anup ◽  
Gregory S Hardy ◽  
John M Richards

Knowledge of seismic hazard at engineered facilities evolves with the growth in related technical fields. This presents challenges to stability and decision-making concerning safety that require effective assessment tools. Updated mean hazard estimates were developed at nuclear power plant (NPP) sites in Central and Eastern United States (CEUS) using the Next Generation Attenuation (NGA)-East ground motion model (GMM) and the latest available site amplification data. These estimates indicated that seismic hazard increases at several CEUS NPP sites, especially for spectral frequencies below 5 Hz. To assess the safety implications, updated mean seismic core damage frequency (SCDF) estimates were developed for the CEUS NPP fleet using the updated mean hazard estimates and updated plant-level fragilities (PLFs). The PLFs were developed from plant-specific information compiled by the U.S. Nuclear Regulatory Commission (USNRC) and recent seismic probabilistic risk assessments (SPRAs) completed by some NPPs. The SCDF quantification followed a method defined by the USNRC to combine risk contributions from different spectral frequencies. While not intended to provide a precise quantification of risk, such as that provided by a full SPRA, when the results are compared against other estimates using the same approach, this process provides valuable insight into the overall change in risk as the understanding of hazard changes. The assessment indicated no significant change in estimated risk for the majority of the CEUS fleet compared to the 2010 USNRC estimates—about 90% of the fleet risk distribution was lower, equal, or slightly higher. A few NPPs had SCDF estimates significantly larger than the 2010 estimates. The SCDF increases at these few NPPs have larger contributions from updated PLFs than updated hazard estimates. The majority of these NPPs have recently completed detailed SPRAs and have tools to develop more accurate estimates of the updated risk than can be achieved in this fleet-level study.


2020 ◽  
Vol 36 (1_suppl) ◽  
pp. 274-297 ◽  
Author(s):  
Graeme Weatherill ◽  
Sreeram Reddy Kotha ◽  
Fabrice Cotton

Probabilistic assessment of seismic hazard and risk over a geographical region presents the modeler with challenges in the characterization of the site amplification that are not present in site-specific assessment. Using site-to-site residuals from a ground motion model fit to observations from the Japanese KiK-net database, correlations between measured local amplifications and mappable proxies such as topographic slope and geology are explored. These are used subsequently to develop empirical models describing amplification as a direct function of slope, conditional upon geological period. These correlations also demonstrate the limitations of inferring 30-m shearwave velocity from slope and applying them directly into ground motion models. Instead, they illustrate the feasibility of deriving spectral acceleration amplification factors directly from sets of observed records, which are calibrated to parameters that can be mapped uniformly on a regional scale. The result is a geologically calibrated amplification model that can be incorporated into national and regional seismic hazard and risk assessment, ensuring that the corresponding total aleatory variability reflects the predictive capability of the mapped site proxy.


2021 ◽  
pp. 875529302110074
Author(s):  
Mohamed M Talaat ◽  
Andrew Seifried ◽  
Abhinav Anup ◽  
Gregory S Hardy ◽  
John M Richards

Two methods were developed to estimate updated mean seismic hazard for existing probabilistic seismic hazard analyses (PSHAs) due to a change in the ground motion model (GMM). Both methods were used to estimate updated hazard at nuclear power plant (NPP) sites in the Central and Eastern United States (CEUS) for a change from the Electric Power Research Institute (EPRI) 2013 GMM to the Next Generation Attenuation (NGA)-East GMM. These methods present efficient tools to inform decisions on whether to perform a full PSHA revision or other detailed evaluations, especially when a large number of sites must be analyzed. A Simplified Hazard (SiHaz) method was developed to estimate mean hazard explicitly using a reduced PSHA logic tree that incorporates the updated GMM and potential changes in the site response model. An alternative scaling method was independently developed to be applied directly to current CEUS NPP hazard. Both methods were validated using updated PSHA results at several sites. Estimates at 46 NPP sites using both methods showed good agreement for mean annual frequencies of exceedance between 1E-4 and 1E-5/yr.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 70
Author(s):  
Florin Pavel

This case-study focuses on the analysis of several key assumptions necessary for the probabilistic seismic hazard assessment of Romania in the light of a future seismic hazard zonation of the territory. Among the aspects analyzed in this study are the appropriateness of the Poisson assumption which is tested on the earthquake catalogs of several seismic sources (crustal and the Vrancea intermediate-depth source), the azimuthal dependence of ground motion amplitudes from Vrancea intermediate-depth earthquakes and possible ground motion amplifications due to basin effects. The analyses performed in this study show that the Poisson distribution is able to model the observed earthquake frequency occurrence for the larger magnitude seismic events both for crustal and intermediate-depth seismic sources. Similar ground motion attenuation patterns irrespective of the azimuth with respect to the Vrancea intermediate-depth seismic source were observed only in the case of the 30 May 1990 earthquake, while in the case of the seismic events of 30 August 1986 and 31 May 1990 significant azimuthal ground-motion attenuation differences were observed. No significant differences in terms of ground motion amplitudes were observed at three seismic stations in Iasi area during the Vrancea intermediate-depth earthquakes of 30 May 1990 and 31 May 1990 possibly due to the limited elevation difference. Finally, significant long-period spectral amplifications were observed on the ground motions recorded at several sites from intramountainous depressions in Romania.


Sign in / Sign up

Export Citation Format

Share Document