cook inlet
Recently Published Documents


TOTAL DOCUMENTS

557
(FIVE YEARS 46)

H-INDEX

25
(FIVE YEARS 4)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260485
Author(s):  
Manuel Castellote ◽  
Aran Mooney ◽  
Russel Andrews ◽  
Stacy Deruiter ◽  
Wu-Jung Lee ◽  
...  

Cook Inlet, Alaska, is home to an endangered and declining population of 279 belugas (Delphinapterus leucas). Recovery efforts highlight a paucity of basic ecological knowledge, impeding the correct assessment of threats and the development of recovery actions. In particular, information on diet and foraging habitat is very limited for this population. Passive acoustic monitoring has proven to be an efficient approach to monitor beluga distribution and seasonal occurrence. Identifying acoustic foraging behavior could help address the current gap in information on diet and foraging habitat. To address this conservation challenge, eight belugas from a comparative, healthy population in Bristol Bay, Alaska, were instrumented with a multi-sensor tag (DTAG), a satellite tag, and a stomach temperature transmitter in August 2014 and May 2016. DTAG deployments provided 129.6 hours of data including foraging and social behavioral states. A total of 68 echolocation click trains ending in terminal buzzes were identified during successful prey chasing and capture, as well as during social interactions. Of these, 37 click trains were successfully processed to measure inter-click intervals (ICI) and ICI trend in their buzzing section. Terminal buzzes with short ICI (minimum ICI <8.98 ms) and consistently decreasing ICI trend (ICI increment range <1.49 ms) were exclusively associated with feeding behavior. This dual metric was applied to acoustic data from one acoustic mooring within the Cook Inlet beluga critical habitat as an example of the application of detecting feeding in long-term passive acoustic monitoring data. This approach allowed description of the relationship between beluga presence, feeding occurrence, and the timing of spawning runs by different species of anadromous fish. Results reflected a clear preference for the Susitna River delta during eulachon (Thaleichthys pacificus), Chinook (Oncorhynchus tshawytscha), pink (Oncorhynchus gorbuscha), and coho (Oncorhynchus kisutch) salmon spawning run periods, with increased feeding occurrence at the peak of the Chinook and pink salmon runs.


2021 ◽  
Vol 40 ◽  
Author(s):  
Caroline E.C. Goertz ◽  
Kathy Woodie ◽  
Brett Long ◽  
Lisa Hartman ◽  
Eric Gaglione ◽  
...  

Given the remote, rugged areas belugas typically inhabit and the low rehabilitation success rate with any cetacean, it is rare to have the opportunity to rescue a live-stranded beluga. The Alaska SeaLife Center cared for two stranded beluga calves with two different outcomes. In 2012, a neonatal male beluga calf (DL1202) stranded following intense storms in Bristol Bay. In 2017, a helicopter pilot discovered a stranded male beluga calf (DL1705) during a flight over Cook Inlet. The Alaska SeaLife Center transported both calves for rehabilitation and utilized supportive care plans based on those for other species of stranded cetaceans and care of neonatal belugas at zoological facilities. Diagnostics included complete blood counts, serum chemistries, microbial cultures, hearing tests, imaging and morphometric measurements to monitor systemic health. Treatments included in-pool flotation support; antimicrobials; gastrointestinal support; and close monitoring of respirations, urination, defecation and behaviour. After three weeks of supportive care, the Bristol Bay calf (DL1202) succumbed to sepsis secondary to a possible prematurity-related lack of passive transfer of antibodies. After seven weeks, the Cook Inlet calf (DL1705) recovered and all medications were discontinued. Unable to survive on his own, he was declared non-releasable and placed in long-term care at a zoological facility, to live with other belugas. Aspects and details from successful cases of cetacean critical care become important references especially vital for the survival of essential animals in small, endangered populations.


2021 ◽  
Vol 40 ◽  
Author(s):  
Tracy A. Romano ◽  
Laura A. Thompson ◽  
Maureen V. Driscoll ◽  
Ebru Unal ◽  
Allison D. Tuttle ◽  
...  

Aquaria that care for and maintain belugas (Delphinapterus leucas) under professional care have the opportunity to contribute to the conservation of wild belugas through research, expertise in animal care and husbandry, and engaging and educating the public about threats to the species’ health and population sustainability. In an aquarium setting, belugas can be studied under controlled conditions, with known variables that are often difficult to discern when studying wild belugas. Information on nutrition, health status and environmental parameters can be easily obtained in a controlled setting. Biological samples are collected from professionally trained whales that voluntarily participate in informative experimental paradigms. Research studies in aquaria seek to contribute to the recovery and management of endangered beluga populations, such as those in Cook Inlet. Mystic Aquarium’s efforts are presented as a case study. Key research priorities address action items in the Cook Inlet Beluga Recovery Plan and include: (1) understanding the beluga immune system, microbial communities, pathogens and disease; (2) development of non-invasive methods for assessing reproductive status, body condition and health in wild whales; (3) investigation of diving physiology and the impact of altered dive patterns on health; (4) understanding reproduction, a key to recovery and sustainability of wild populations; (5) development and testing of new technologies for tracking and monitoring whales and habitat use; and (6) understanding how noise affects beluga hearing, behaviour and physiology. Expertise in animal handling, behaviour and nutrition contribute to rescue, rehabilitation and capture release efforts. Moreover, ‘students’ of all ages have the opportunity to be engaged, educated and contribute to beluga conservation.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1288
Author(s):  
Heather A. Coletti ◽  
Lizabeth Bowen ◽  
Brenda E. Ballachey ◽  
Tammy L. Wilson ◽  
Shannon Waters ◽  
...  

With rapidly changing marine ecosystems, shifts in abundance and distribution are being documented for a variety of intertidal species. We examined two adjacent populations of Pacific razor clams (Siliqua patula) in lower Cook Inlet, Alaska. One population (east) supported a sport and personal use fishery, but this has been closed since 2015 due to declines in abundance, and the second population (west) continues to support commercial and sport fisheries. We used gene expression to investigate potential causes of the east side decline, comparing razor clam physiological responses between east and west Cook Inlet. The target gene profile used was developed for razor clam populations in Alaska based on physiological responses to environmental stressors. In this study, we identified no differences of gene expression between east and west populations, leading to two potential conclusions: (1) differences in factors capable of influencing physiology exist between the east and west and are sufficient to influence razor clam populations but are not detected by the genes in our panel, or (2) physiological processes do not account for the differences in abundance, and other factors such as predation or changes in habitat may be impacting the east Cook Inlet population.


2021 ◽  
Author(s):  
Ruth Branch ◽  
Zhaoqing Yang ◽  
Taiping Wang ◽  
Gabriel Garcia Medina ◽  
Jonathan Whiting

2021 ◽  
Author(s):  
Grant E. Haines ◽  
Louis Moisan ◽  
Alison M. Derry ◽  
Andrew P. Hendry

In nature, populations are subjected to a wide variety of environmental conditions that affect fitness and induce adaptive or plastic responses in traits, resulting in phenotypic divergence between populations. The dimensionality of that divergence, however, remains contentious. At the extremes, some contend that populations diverge along a single axis of trait covariance with greatest availability of heritable variation, even if this does not lead a population directly to its fitness optimum. Those at the other extreme argue that selection can push populations towards their fitness optima along multiple phenotype axes simultaneously, resulting in divergence in numerous dimensions. Here, we address this debate using populations of threespine stickleback (Gasterosteus aculeatus) in the Cook Inlet region of southern Alaska from lakes with contrasting ecological conditions. We calculated effective dimensionality of divergence in several trait suites (defensive, swimming, and trophic) thought to be under correlated selection pressures, as well as across all traits. We also tested for integration among the trait suites and between each trait suite and the environment. We found that populations in the Cook Inlet radiation exhibit dimensionality of phenotype high enough to preclude a single axis of divergence.


2021 ◽  
Vol 150 (4) ◽  
pp. A46-A47
Author(s):  
Manuel Castellote ◽  
Lori Polasek ◽  
Justin Olnes ◽  
Christopher Garner ◽  
Brian Taras ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document