A new hypothesis about the mechanism of magnetic-domain formation

2002 ◽  
Vol 82 (18) ◽  
pp. 1859-1865
Author(s):  
F. Branda ◽  
G. Luciani ◽  
A. Costantini
2006 ◽  
Vol 96 (19) ◽  
Author(s):  
B. Binz ◽  
H. B. Braun ◽  
T. M. Rice ◽  
M. Sigrist

2008 ◽  
Vol 77 (9) ◽  
Author(s):  
S. Blomeier ◽  
B. Hillebrands ◽  
B. Reuscher ◽  
A. Brodyanski ◽  
M. Kopnarski ◽  
...  

2007 ◽  
Vol 601 (20) ◽  
pp. 4690-4693 ◽  
Author(s):  
Toshiyuki Taniuchi ◽  
Ryutaro Yasuhara ◽  
Hiroshi Kumigashira ◽  
Masato Kubota ◽  
Hiroyuki Okazaki ◽  
...  

2009 ◽  
Vol 105 (7) ◽  
pp. 07C120 ◽  
Author(s):  
K. L. Krycka ◽  
B. B. Maranville ◽  
J. A. Borchers ◽  
F. J. Castaño ◽  
B. G. Ng ◽  
...  

2011 ◽  
Vol 23 (28) ◽  
pp. 3187-3191 ◽  
Author(s):  
Tuomas H. E. Lahtinen ◽  
Jussi O. Tuomi ◽  
Sebastiaan van Dijken

2018 ◽  
Vol 98 (1) ◽  
Author(s):  
Alexander A. Zharov ◽  
Alexander A. Zharov ◽  
Nina A. Zharova

2010 ◽  
Vol 1256 ◽  
Author(s):  
Joanna Strongson Bettinger ◽  
Rajesh V. Chopdekar ◽  
Brooke Mesler ◽  
Douglas Chain ◽  
Andrew Doran ◽  
...  

AbstractTo successfully incorporate the highly spin-polarized material La0.7Sr0.3MnO3 (LSMO) into spin-based electronic devices it is essential to be able to control and tune the magnetic domain structure. In this work, we geometrically confine epitaxial thin films of LSMO into hexagons to examine the effect of magnetostatic and magnetic anisotropy energies on the domain formation. We find through careful choice of hexagon aspect ratio, crystalline direction, and substrate orientation, we can tune the magnetic domain formation to be single, two, six (flux closure), or other domain configurations.


Sign in / Sign up

Export Citation Format

Share Document