Pattern Transfer and Electric-Field-Induced Magnetic Domain Formation in Multiferroic Heterostructures

2011 ◽  
Vol 23 (28) ◽  
pp. 3187-3191 ◽  
Author(s):  
Tuomas H. E. Lahtinen ◽  
Jussi O. Tuomi ◽  
Sebastiaan van Dijken
Author(s):  
Xinger Zhao ◽  
Zhongqiang Hu ◽  
Jingen Wu ◽  
Ting Fang ◽  
Yaojin Li ◽  
...  

AbstractElectric field (E-field) control of magnetism based on magnetoelectric coupling is one of the promising approaches for manipulating the magnetization with low power consumption. The evolution of magnetic domains under in-situ E-fields is significant for the practical applications in integrated micro/nano devices. Here, we report the vector analysis of the E-field-driven antiparallel magnetic domain evolution in FeCoSiB/PMN-PT(011) multiferroic heterostructures via in-situ quantitative magneto-optical Kerr microscope. It is demonstrated that the magnetic domains can be switched to both the 0° and 180° easy directions at the same time by E-fields, resulting in antiparallel magnetization distribution in ferromagnetic/ferroelectric heterostructures. This antiparallel magnetic domain evolution is attributed to energy minimization with the uniaxial strains by E-fields which can induce the rotation of domains no more than 90°. Moreover, domains can be driven along only one or both easy axis directions by reasonably selecting the initial magnetic domain distribution. The vector analysis of magnetic domain evolution can provide visual insights into the strain-mediated magnetoelectric effect, and promote the fundamental understanding of electrical regulation of magnetism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Munusamy Kuppan ◽  
Daichi Yamamoto ◽  
Genta Egawa ◽  
Sivaperuman Kalainathan ◽  
Satoru Yoshimura

Abstract(Bi1−xLax)(Fe,Co)O3 multiferroic magnetic film were fabricated using pulsed DC (direct current) sputtering technique and demonstrated magnetization reversal by applied electric field. The fabricated (Bi0.41La0.59)(Fe0.75Co0.25)O3 films exhibited hysteresis curves of both ferromagnetic and ferroelectric behavior. The saturated magnetization (Ms) of the multiferroic film was about 70 emu/cm3. The squareness (S) (= remanent magnetization (Mr)/Ms) and coercivity (Hc) of perpendicular to film plane are 0.64 and 4.2 kOe which are larger compared with films in parallel to film plane of 0.5 and 2.5 kOe. The electric and magnetic domain structures of the (Bi0.41La0.59)(Fe0.75Co0.25)O3 film analyzed by electric force microscopy (EFM) and magnetic force microscopy (MFM) were clearly induced with submicron scale by applying a local electric field. This magnetization reversal indicates the future realization of high performance magnetic device with low power consumption.


2018 ◽  
Vol 4 (12) ◽  
pp. eaav0265 ◽  
Author(s):  
Tomohiro Koyama ◽  
Yoshinobu Nakatani ◽  
Jun’ichi Ieda ◽  
Daichi Chiba

We show that the electric field (EF) can control the domain wall (DW) velocity in a Pt/Co/Pd asymmetric structure. With the application of a gate voltage, a substantial change in DW velocity up to 50 m/s is observed, which is much greater than that observed in previous studies. Moreover, modulation of a DW velocity exceeding 100 m/s is demonstrated in this study. An EF-induced change in the interfacial Dzyaloshinskii-Moriya interaction (DMI) up to several percent is found to be the origin of the velocity modulation. The DMI-mediated velocity change shown here is a fundamentally different mechanism from that caused by EF-induced anisotropy modulation. Our results will pave the way for the electrical manipulation of spin structures and dynamics via DMI control, which can enhance the performance of spintronic devices.


2000 ◽  
Vol 8 (2) ◽  
pp. 141-145 ◽  
Author(s):  
Jiannong Wang ◽  
Baoquan Sun ◽  
Xiangrong Wang ◽  
Yuqi Wang ◽  
Wekun Ge ◽  
...  

2009 ◽  
Vol 152-153 ◽  
pp. 143-146 ◽  
Author(s):  
A. Logginov ◽  
G. Meshkov ◽  
A. Nikolaev ◽  
E. Nikolaeva ◽  
A. Pyatakov ◽  
...  

The room temperature magnetoelectric effect was observed in epitaxial iron garnet films that appeared as magnetic domain wall motion induced by electric field. The films grown on gadolinium-gallium garnet substrates with various crystallographic orientations were examined. The effect was observed in (210) and (110) films and was not observed in (111) films. Dynamic observation of the domain wall motion in 800 kV/cm electric field pulses gave the domain wall velocity in the range 30÷50 m/s. Similar velocity was achieved in magnetic field pulse about 50 Oe.


2014 ◽  
Vol 112 (1) ◽  
Author(s):  
Kévin J. A. Franke ◽  
Diego López González ◽  
Sampo J. Hämäläinen ◽  
Sebastiaan van Dijken

2006 ◽  
Vol 96 (19) ◽  
Author(s):  
B. Binz ◽  
H. B. Braun ◽  
T. M. Rice ◽  
M. Sigrist

Sign in / Sign up

Export Citation Format

Share Document