self organized criticality
Recently Published Documents


TOTAL DOCUMENTS

1044
(FIVE YEARS 113)

H-INDEX

72
(FIVE YEARS 4)

Economies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Tiago Cruz Gonçalves ◽  
Jorge Victor Quiñones Borda ◽  
Pedro Rino Vieira ◽  
Pedro Verga Matos

The study of critical phenomena that originated in the natural sciences has been extended to the financial economics’ field, giving researchers new approaches to risk management, forecasting, the study of bubbles and crashes, and many kinds of problems involving complex systems with self-organized criticality (SOC). This study uses the theory of self-similar oscillatory time singularities to analyze stock market crashes. We test the Log Periodic Power Law/Model (LPPM) to analyze the Portuguese stock market, in its crises in 1998, 2007, and 2015. Parameter values are in line with those observed in other markets. This is particularly interesting since if the model performs robustly for Portugal, which is a small market with liquidity issues and the index is only composed of 20 stocks, we provide consistent evidence in favor of the proposed LPPM methodology. The LPPM methodology proposed here would have allowed us to avoid big loses in the 1998 Portuguese crash, and would have permitted us to sell at points near the peak in the 2007 crash. In the case of the 2015 crisis, we would have obtained a good indication of the moment where the lowest data point was going to be achieved.


MAUSAM ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 297-302
Author(s):  
A. M. SELVAM ◽  
M. RADHAMANI

  Long-range spatio-temporal correlations manifested as the self-similar fractal geometry to the spatial pattern concomitant with inverse power law form for the power spectrum of temporal fluctuations are ubiquitous to real world dynamical systems and are recently identified as signatures of self-organized criticality Self-organised criticality in atmospheric flows is exhibited as the fractal geometry 10 the global cloud cover pattern and the inverse power law form for the atmospheric eddy energy spectrum, In this paper, a recently developed cell dynamical system model for  atmospheric flows is summarized. The model predicts inverse power law form of the statistical normal distribution for atmospheric eddy energy spectrum as a natural consequence of quantum-like mechanics governing atmospheric flows extending up to stratospheric levels and above, Model Predictions are in agreement with continuous periodogram analyses of atmospheric total ozone. Atmospheric total ozone variability (in days) exhibits the temporal signature of self-organized criticality, namely, inverse power law form for the power spectrum. Further, the long-range temporal correlations implicit to self-organized criticality can be quantified in terms of the universal characteristics  of the normal distribution. Therefore the total pattern of fluctuations of total ozone over a period of time is predictable.  


2021 ◽  
Vol 933 ◽  
Author(s):  
Gregory P. Chini ◽  
Guillaume Michel ◽  
Keith Julien ◽  
Cesar B. Rocha ◽  
Colm-cille P. Caulfield

A multiscale reduced description of turbulent free shear flows in the presence of strong stabilizing density stratification is derived via asymptotic analysis of the Boussinesq equations in the simultaneous limits of small Froude and large Reynolds numbers. The analysis explicitly recognizes the occurrence of dynamics on disparate spatiotemporal scales, yielding simplified partial differential equations governing the coupled evolution of slow large-scale hydrostatic flows and fast small-scale isotropic instabilities and internal waves. The dynamics captured by the coupled reduced equations is illustrated in the context of two-dimensional strongly stratified Kolmogorov flow. A noteworthy feature of the reduced model is that the fluctuations are constrained to satisfy quasilinear (QL) dynamics about the comparably slowly varying large-scale fields. Crucially, this QL reduction is not invoked as an ad hoc closure approximation, but rather is derived in a physically relevant and mathematically consistent distinguished limit. Further analysis of the resulting slow–fast QL system shows how the amplitude of the fast stratified-shear instabilities is slaved to the slowly evolving mean fields to ensure the marginal stability of the latter. Physically, this marginal stability condition appears to be compatible with recent evidence of self-organized criticality in both observations and simulations of stratified turbulence. Algorithmically, the slaving of the fluctuation fields enables numerical simulations to be time-evolved strictly on the slow time scale of the hydrostatic flow. The reduced equations thus provide a solid mathematical foundation for future studies of three-dimensional strongly stratified turbulence in extreme parameter regimes of geophysical relevance and suggest avenues for new sub-grid-scale parametrizations.


2021 ◽  
Vol 2 (4) ◽  
pp. 041001
Author(s):  
Ricard Solé ◽  
Nuria Conde-Pueyo ◽  
Antoni Guillamon ◽  
Victor Maull ◽  
Jordi Pla ◽  
...  

Abstract Cognitive networks have evolved to cope with uncertain environments in order to make reliable decisions. Such decision making circuits need to respond to the external world in efficient and flexible ways, and one potentially general mechanism of achieving this is grounded in critical states. Mounting evidence has shown that brains operate close to such critical boundaries consistent with self-organized criticality (SOC). Is this also taking place in small-scale living systems, such as cells? Here, we explore a recent model of engineered gene networks that have been shown to exploit the feedback between order and control parameters (as defined by expression levels of two coupled genes) to achieve an SOC state. We suggest that such SOC motif could be exploited to generate adaptive behavioral patterns and might help design fast responses in synthetic cellular and multicellular organisms.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1486
Author(s):  
Lawrence S. Schulman

Power laws often lead to the conclusion that self-organized criticality is at work. This is not the case, and power laws can also occur away from criticality or can occur for other reasons.


Author(s):  
Ricard Sole ◽  
Nuria Conde ◽  
Antoni Guillamon ◽  
Victor Maull ◽  
Jordi Pla ◽  
...  

Cognitive networks have evolved to cope with uncertain environments in order to make reliable decisions. Such decision making circuits need to respond to the external world in efficient and flexible ways, and one potentially general mechanism of achieving this is grounded in critical states. Mounting evidence has shown that brains operate close to such critical boundaries consistent with self-organized criticality (SOC). Is this also taking place in small-scale living systems, such as cells? Here we explore a recent model of engineered gene networks that have been shown to exploit the feedback between order and control parameters (as defined by expression levels of two coupled genes) to achieve a SOC state. We suggest that such SOC motif could be exploited to generate adaptive behavioral patterns and might help design fast responses in synthetic cellular and multicellular organisms.


2021 ◽  
Author(s):  
Gregoire Guillet ◽  
Owen King ◽  
Mingyang Lv ◽  
Sajid Ghuffar ◽  
Douglas Benn ◽  
...  

Abstract. Knowledge about the occurrence and characteristics of surge-type glaciers is crucial due to the impact of surging on glacier melt and glacier related hazards. One of the "super-clusters" of surge-type glaciers is the mountains of Asia. However, no consistent region-wide inventory of surge-type glaciers in High Mountain Asia exists. We present a regionally resolved inventory of surge-type glaciers based on their behaviour across High Mountain Asia between 2000 and 2018. We identify surge-type behaviour from surface velocity, elevation and feature change patterns using a multi-factor remote sensing approach that combines yearly ITS_LIVE velocity data, DEM differences and very-high resolution imagery (Bing Maps, Google Earth). Out of the ≈ 95000 glaciers in HMA, we identified 666 that show diagnostic surge-type glacier behaviour between 2000 and 2018, which are mainly found in the Karakoram (223) and the Pamir regions (223). The total area covered by the 666 surge-type glaciers represents 19.5 % of the glacierized area in Randolph Glacier Inventory (RGI) V6.0 polygons in HMA. Across all regions of HMA, the surge-affected area within glacier complexes displays a significant power law dependency with glacier length. We validate 107 previously identified glaciers as surge-type and newly identify 491 glaciers. We finally discuss the possibility of self-organized criticality in glacier surges.


Sign in / Sign up

Export Citation Format

Share Document