scholarly journals Analytical and numerical study of the expansion effect on the velocity deficit of rotating detonation waves

2020 ◽  
Vol 24 (4) ◽  
pp. 761-774
Author(s):  
Mingyi Luan ◽  
Shujie Zhang ◽  
Zhijie Xia ◽  
Songbai Yao ◽  
J.-P. Wang
2020 ◽  
Vol 2020 (3) ◽  
pp. 30-48
Author(s):  
Tae-Hyeong Yi ◽  
Jing Lou ◽  
Cary Kenny Turangan ◽  
Piotr Wolanski

AbstractNumerical studies on detonation wave propagation in rotating detonation engine and its propulsive performance with one- and multi-step chemistries of a hydrogen-based mixture are presented. The computational codes were developed based on the three-dimensional Euler equations coupled with source terms that incorporate high-temperature chemical reactions. The governing equations were discretized using Roe scheme-based finite volume method for spatial terms and second-order Runge-Kutta method for temporal terms. One-dimensional detonation simulations with one- and multi-step chemistries of a hydrogen-air mixture were performed to verify the computational codes and chemical mechanisms. In two-dimensional simulations, detonation waves rotating in a rectangular chamber were investigated to understand its flowfield characteristics, where the detailed flowfield structure observed in the experiments was successfully captured. Three-dimensional simulations of two-waved rotating detonation engine with an annular chamber were performed to evaluate its propulsive performance in the form of thrust and specific impulse. It was shown that rotating detonation engine produced constant thrust after the flowfield in the chamber was stabilized, which is a major difference from pulse detonation engine that generates repetitive and intermittent thrust.


Author(s):  
A. I. Lopato ◽  
◽  
A. G. Eremenko ◽  

Recently, we developed a numerical approach for the simulation of detonation waves on fully unstructured grids and applied it to the numerical study of the mechanisms of detonation initiation in multifocusing systems. Current work is devoted to further development of our numerical approach, namely, parallelization of the numerical scheme and introduction of more comprehensive detailed chemical kinetics scheme.


Author(s):  
V. A. SABELNIKOV ◽  
◽  
V. V. VLASENKO ◽  
S. BAKHNE ◽  
S. S. MOLEV ◽  
...  

Gasdynamics of detonation waves was widely studied within last hundred years - analytically, experimentally, and numerically. The majority of classical studies of the XX century were concentrated on inviscid aspects of detonation structure and propagation. There was a widespread opinion that detonation is such a fast phenomenon that viscous e¨ects should have insigni¦cant in§uence on its propagation. When the era of calculations based on the Reynolds-averaged Navier- Stokes (RANS) and large eddy simulation approaches came into effect, researchers pounced on practical problems with complex geometry and with the interaction of many physical effects. There is only a limited number of works studying the in§uence of viscosity on detonation propagation in supersonic §ows in ducts (i. e., in the presence of boundary layers).


2020 ◽  
Vol 310 (1) ◽  
pp. 185-201
Author(s):  
V. A. Levin ◽  
I. S. Manuylovich ◽  
V. V. Markov

Sign in / Sign up

Export Citation Format

Share Document