reaction kinetic
Recently Published Documents


TOTAL DOCUMENTS

466
(FIVE YEARS 94)

H-INDEX

37
(FIVE YEARS 5)

2021 ◽  
Vol 24 (2) ◽  
pp. 104-111
Author(s):  
Tabarek Abdulsajad Jabar ◽  
Khalid M. Mousa Al-zobai

This work investigated the removal of the reactive green (R.G) dye from wastewater using the photo-Fenton process. Batch experiments were carried out to research the role of the Impacts of operating parameters. The dosage of H2O2; dosage Fe+2; pH; temperature, and irradiation time were examined. Maximum decolorization efficiencies green dye were achieved at the [H2O2]=100 ppm; [Fe2+]=20 ppm; pH 3; temperature=56 °C and irradiation time=90 min. This research focuses on modeling, kinetics and thermodynamics of the removal of pollutant (reactive green dye) of water. The results showed that the decolorization kinetic of R.G followed pseudo-first-order reaction kinetic. Also the thermodynamic parameters ∆G˚, ∆H˚ and ∆S˚ were determined using the Van't Hoff equation for the oxidation processes. The changes in Gibbs free energy showed the oxidation process under normal conditions is non-spontaneous.


2021 ◽  
Author(s):  
Qaiser Waheed ◽  
Huimin Zhou ◽  
Peter Ruoff

Homeostasis plays a central role in our understanding how cells and organisms are able to oppose environmental disturbances and thereby maintain an internal stability. During the last two decades there has been an increased interest in using control engineering methods, especially integral control, in the analysis and design of homeostatic networks. Several reaction kinetic mechanisms have been discovered which lead to integral control. In two of them integral control is achieved, either by the removal of a single control species E by zero-order  kinetics ("single-E controllers"), or by the removal of two control species  by second-order kinetics ("antithetic or dual-E control"). In this paper we show results when the control species E 1  and E 2  in antithetic control are removed enzymatically by ping-pong or ternary-complex mechanisms. Our findings show that enzyme-catalyzed dual-E controllers can work in two control modes. In one mode, one of the two control species is active, but requires zero-order kinetics in its removal. In the other mode, both controller species are active and both are removed enzymatically. Conditions for the two control modes are put forward and biochemical examples with the structure of enzyme-catalyzed dual-E controllers are discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3286
Author(s):  
Alexander V. Rassolov ◽  
Igor S. Mashkovsky ◽  
Galina N. Baeva ◽  
Galina O. Bragina ◽  
Nadezhda S. Smirnova ◽  
...  

This research was focused on studying the performance of the Pd1Ag3/Al2O3 single-atom alloy (SAA) in the liquid-phase hydrogenation of di-substituted alkyne (1-phenyl-1-propyne), and development of a kinetic model adequately describing the reaction kinetic being also consistent with the reaction mechanism suggested for alkyne hydrogenation on SAA catalysts. Formation of the SAA structure on the surface of PdAg3 nanoparticles was confirmed by DRIFTS-CO, revealing the presence of single-atom Pd1 sites surrounded by Ag atoms (characteristic symmetrical band at 2046 cm−1) and almost complete absence of multiatomic Pdn surface sites (<0.2%). The catalyst demonstrated excellent selectivity in alkyne formation (95–97%), which is essentially independent of P(H2) and alkyne concentration. It is remarkable that selectivity remains almost constant upon variation of 1-phenyl-1-propyne (1-Ph-1-Pr) conversion from 5 to 95–98%, which indicates that a direct alkyne to alkane hydrogenation is negligible over Pd1Ag3 catalyst. The kinetics of 1-phenyl-1-propyne hydrogenation on Pd1Ag3/Al2O3 was adequately described by the Langmuir-Hinshelwood type of model developed on the basis of the reaction mechanism, which suggests competitive H2 and alkyne/alkene adsorption on single atom Pd1 centers surrounded by inactive Ag atoms. The model is capable to describe kinetic characteristics of 1-phenyl-1-propyne hydrogenation on SAA Pd1Ag3/Al2O3 catalyst with the excellent explanation degree (98.9%).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhi-Ping Li ◽  
Jun-Cheng Jiang ◽  
An-Chi Huang ◽  
Yan Tang ◽  
Chun-Feng Miao ◽  
...  

AbstractNitrocellulose (NC) is widely used in both military and civilian fields. Because of its high chemical sensitivity and low decomposition temperature, NC is prone to spontaneous combustion. Due to the dangerous properties of NC, it is often dissolved in other organic solvents, then stored and transported in the form of a solution. Therefore, this paper took NC solutions (NC-S) with different concentrations as research objects. Under different atmospheric conditions, a series of thermal analysis experiments and different reaction kinetic methods investigated the influence of solution concentration and oxygen concentration on NC-S’s thermal stability. The variation rules of NC-S’s thermodynamic parameters with solution and oxygen concentrations were explored. On this basis, the spontaneous combustion characteristics of NC-S under actual industrial conditions were summarized to put forward the theoretical guidance for the spontaneous combustion treatment together with the safety in production, transportation, and storage.


Author(s):  
A. K. Singh

The specific rate constant of ethyl caprylate in alkali catalised hydrolysis in water-acetone mixture covering range of 30 to 70% (v/v) of acetone has been determined at temperature 20 to 400c. The rate of reaction decreases with increase in percentage of Acetone from 30 to 70% (v/v). The observed Activation energy decreases progressively with increase in acetone content of the medium. The effect of molar concentration of water and Dielectric constant on the reaction kinetic has also been studied. The thermodynamic parameters (DG*, DH* and DS*) has been determined which showed strong dependency on solvent composition.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6973
Author(s):  
Piotr Szperlich

Interest in pyroelectrics and piezoelectrics has increased worldwide on account of their unique properties. Applications based on these phenomena include piezo- and pyroelectric nanogenerators, piezoelectric sensors, and piezocatalysis. One of the most interesting materials used in this growing field are A15B16C17 nanowires, an example of which is SbSI. The latter has an electromechanical coupling coefficient of 0.8, a piezoelectric module of 2000 pC/N, and a pyroelectric coefficient of 12 × 10−3 C/m2K. In this review, we examine the production and properties of these nanowires and their composites, such as PAN/SbSI and PVDF/SbSI. The generated electrical response from 11 different structures under various excitations, such as an impact or a pressure shock, are presented. It is shown, for example, that the PVDF/SbSI and PAN/SbSI composites have well-arranged nanowires, the orientation of which greatly affects the value of its output power. The power density for all the nanogenerators based upon A15B16C17 nanowires (and their composites) are recalculated by use of the same key equation. This enables an accurate comparison of the efficiency of all the configurations. The piezo- and photocatalytic properties of SbSI nanowires are also presented; their excellent ability is shown by the high reaction kinetic rate constant (7.6 min−1).


Author(s):  
Xuesong Lu ◽  
Xiaojiao Luo ◽  
Warren A. Thompson ◽  
Jeannie Z. Y. Tan ◽  
M. Mercedes Maroto-Valer

AbstractThe production of solar fuels via the photoreduction of carbon dioxide to methane by titanium oxide is a promising process to control greenhouse gas emissions and provide alternative renewable fuels. Although several reaction mechanisms have been proposed, the detailed steps are still ambiguous, and the limiting factors are not well defined. To improve our understanding of the mechanisms of carbon dioxide photoreduction, a multi-physics model was developed using COMSOL. The novelty of this work is the computational fluid dynamic model combined with the novel carbon dioxide photoreduction intrinsic reaction kinetic model, which was built based on three-steps, namely gas adsorption, surface reactions and desorption, while the ultraviolet light intensity distribution was simulated by the Gaussian distribution model and Beer-Lambert model. The carbon dioxide photoreduction process conducted in a laboratory-scale reactor under different carbon dioxide and water moisture partial pressures was then modeled based on the intrinsic kinetic model. It was found that the simulation results for methane, carbon monoxide and hydrogen yield match the experiments in the concentration range of 10−4 mol·m−3 at the low carbon dioxide and water moisture partial pressure. Finally, the factors of adsorption site concentration, adsorption equilibrium constant, ultraviolet light intensity and temperature were evaluated.


Sign in / Sign up

Export Citation Format

Share Document