The tracking study of 3D image feature points of aerobic movements of high difficulty

2017 ◽  
Vol 66 (4) ◽  
pp. 211-219
Author(s):  
Xiao-hui Shi
2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Li Xu ◽  
Ling Bai ◽  
Lei Li

Considering the problems of poor effect, long reconstruction time, large mean square error (MSE), low signal-to-noise ratio (SNR), and structural similarity index (SSIM) of traditional methods in three-dimensional (3D) image virtual reconstruction, the effect of 3D image virtual reconstruction based on visual communication is proposed. Using the distribution set of 3D image visual communication feature points, the feature point components of 3D image virtual reconstruction are obtained. By iterating the 3D image visual communication information, the features of 3D image virtual reconstruction in visual communication are decomposed, and the 3D image visual communication model is constructed. Based on the calculation of the difference of 3D image texture feature points, the spatial position relationship of 3D image feature points after virtual reconstruction is calculated to complete the texture mapping of 3D image. The deep texture feature points of 3D image are extracted. According to the description coefficient of 3D image virtual reconstruction in visual communication, the virtual reconstruction results of 3D image are constrained. The virtual reconstruction algorithm of 3D image is designed to realize the virtual reconstruction of 3D image. The results show that when the number of samples is 200, the virtual reconstruction time of this paper method is 2.1 s, and the system running time is 5 s; the SNR of the virtual reconstruction is 35.5 db. The MSE of 3D image virtual reconstruction is 3%, and the SSIM of virtual reconstruction is 1.38%, which shows that this paper method can effectively improve the ability of 3D image virtual reconstruction.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1839
Author(s):  
Yutong Zhang ◽  
Jianmei Song ◽  
Yan Ding ◽  
Yating Yuan ◽  
Hua-Liang Wei

Fisheye images with a far larger Field of View (FOV) have severe radial distortion, with the result that the associated image feature matching process cannot achieve the best performance if the traditional feature descriptors are used. To address this challenge, this paper reports a novel distorted Binary Robust Independent Elementary Feature (BRIEF) descriptor for fisheye images based on a spherical perspective model. Firstly, the 3D gray centroid of feature points is designed, and the position and direction of the feature points on the spherical image are described by a constructed feature point attitude matrix. Then, based on the attitude matrix of feature points, the coordinate mapping relationship between the BRIEF descriptor template and the fisheye image is established to realize the computation associated with the distorted BRIEF descriptor. Four experiments are provided to test and verify the invariance and matching performance of the proposed descriptor for a fisheye image. The experimental results show that the proposed descriptor works well for distortion invariance and can significantly improve the matching performance in fisheye images.


2014 ◽  
Vol 519-520 ◽  
pp. 577-580
Author(s):  
Shuai Yuan ◽  
Guo Yun Zhang ◽  
Jian Hui Wu ◽  
Long Yuan Guo

Fingerprint image feature extraction is a critical step to fingerprint recognition system, which studies topological structure, mathematical model and extraction algorithm of fingerprint feature. This paper presents system design and realization of feature extraction algorithm for fingerprint image. On the basis of fingerprint skeleton image, feature points including ending points, bifurcation points and singular points are extracted at first. Then false feature points are detected and eliminated by the violent changes of ambient orientation field. True feature points are marked at last. Test result shows that the method presented has good accuracy, quick speed and strong robustness for realtime application.


2005 ◽  
Vol 1 (1) ◽  
pp. 69-71 ◽  
Author(s):  
Hao Zhang ◽  
Zhan-hua Huang ◽  
Dao-ying Yu

Sign in / Sign up

Export Citation Format

Share Document