Relationship between epilarynx tube shape and the radiated sound pressure level during phonation is gender specific

Author(s):  
Alexander Mainka ◽  
Ivan Platzek ◽  
Anna Klimova ◽  
Willy Mattheus ◽  
Mario Fleischer ◽  
...  
Author(s):  
B. S. Sridhara

Abstract A computer simulation was employed to perform parametric studies on muffler design. Engine exhaust system parameters such as muffler diameter, source-muffler pipe length, number of mufflers, series and parallel installation of mufflers, and the source and termination impedances were considered during the studies. The muffler insertion loss and radiated sound pressure level were predicted for several values of each parameter. An acoustic model consisting of a lumped source-muffler-termination system was used. A scheme was developed using the pressure source model to predict the radiated sound pressure and a simplified expression for the predicted quantity was obtained as a sum of the measured, plane wave and monopole terms. The relationship between the insertion loss and radiated sound pressure level was established for a given set of conditions. A vacuum pump was used as the sound source. An expansion chamber was used as a muffler.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 777 ◽  
Author(s):  
Zhengwei Yang ◽  
Huihua Feng ◽  
Bingjie Ma ◽  
Ammar Abdualrahim Alnor Khalifa

Traditional acoustic evaluation of a diesel engine generally uses the A-weighted sound pressure level (AWSPL) and radiated sound power to assess the noise of an engine prototype present in an experiment. However, this cannot accurately and comprehensively reflect the auditory senses of human subjects during the simulation stage. To overcome such shortage, the Moore–Glasberg loudness and sharpness approach is applied to evaluate and improve the sound quality (SQ) of a 16 V-type marine diesel engine, and synthesizing noise audio files. Through finite element (FE) simulations, the modes of the engine’s block and the average vibrational velocity of the entire engine surface were calculated and compared with the test results. By further applying an automatically matched layer (AML) approach, the engine-radiated sound pressure level (SPL) and sound power contributions of all engine parts were obtained. By analyzing the Moore–Glasberg loudness and sharpness characteristics of three critical sound field points, an improvement strategy of the oil sump was then proposed. After improvement, both the loudness and sharpness decreased significantly. To verify the objective SQ evaluation results, ten noise audio clips of the diesel engine were then synthesized and tested. The subjective evaluation results were in accordance with the simulated analysis. Therefore, the proposed approach to analyze and improve the SQ of a diesel engine is reliable and effective.


2011 ◽  
Vol 338 ◽  
pp. 543-546
Author(s):  
Hu Yu ◽  
Hong Hou ◽  
Liang Sun

In this study we use the CAE technology to compute and reduce the radiated noise of range hood. First, a finite element model of a typical range hood is created using Hypermesh. Then, the surface particle velocity is carried out in Nastran, and the radiated noise is calculated by Sysnoise. Finally, the DOE-based structural optimization is preformed using iSIGHT-FD, in which the sound pressure level at four sensitive points and the radiated sound power are selected as the objective function and the thickness of four panels are adopted as design variable. In addition, the weight of the range hood as a constraint is kept no more than its original weight. As a result, a maximum radiated sound power reduction of 3.66W and a maximum sound pressure level reduction of 4.7 dB are successfully achieved. It shows the CAE technology is a very efficient and effective method for reducing radiated noise.


2020 ◽  
Vol 63 (4) ◽  
pp. 931-947
Author(s):  
Teresa L. D. Hardy ◽  
Carol A. Boliek ◽  
Daniel Aalto ◽  
Justin Lewicke ◽  
Kristopher Wells ◽  
...  

Purpose The purpose of this study was twofold: (a) to identify a set of communication-based predictors (including both acoustic and gestural variables) of masculinity–femininity ratings and (b) to explore differences in ratings between audio and audiovisual presentation modes for transgender and cisgender communicators. Method The voices and gestures of a group of cisgender men and women ( n = 10 of each) and transgender women ( n = 20) communicators were recorded while they recounted the story of a cartoon using acoustic and motion capture recording systems. A total of 17 acoustic and gestural variables were measured from these recordings. A group of observers ( n = 20) rated each communicator's masculinity–femininity based on 30- to 45-s samples of the cartoon description presented in three modes: audio, visual, and audio visual. Visual and audiovisual stimuli contained point light displays standardized for size. Ratings were made using a direct magnitude estimation scale without modulus. Communication-based predictors of masculinity–femininity ratings were identified using multiple regression, and analysis of variance was used to determine the effect of presentation mode on perceptual ratings. Results Fundamental frequency, average vowel formant, and sound pressure level were identified as significant predictors of masculinity–femininity ratings for these communicators. Communicators were rated significantly more feminine in the audio than the audiovisual mode and unreliably in the visual-only mode. Conclusions Both study purposes were met. Results support continued emphasis on fundamental frequency and vocal tract resonance in voice and communication modification training with transgender individuals and provide evidence for the potential benefit of modifying sound pressure level, especially when a masculine presentation is desired.


2020 ◽  
Vol 68 (2) ◽  
pp. 137-145
Author(s):  
Yang Zhouo ◽  
Ming Gao ◽  
Suoying He ◽  
Yuetao Shi ◽  
Fengzhong Sun

Based on the basic theory of water droplets impact noise, the generation mechanism and calculation model of the water-splashing noise for natural draft wet cooling towers were established in this study, and then by means of the custom software, the water-splashing noise was studied under different water droplet diameters and water-spraying densities as well as partition water distribution patterns conditions. Comparedwith the water-splashing noise of the field test, the average difference of the theoretical and the measured value is 0.82 dB, which validates the accuracy of the established theoretical model. The results based on theoretical model showed that, when the water droplet diameters are smaller in cooling tower, the attenuation of total sound pressure level of the water-splashing noise is greater. From 0 m to 8 m away from the cooling tower, the sound pressure level of the watersplashing noise of 3 mm and 6 mm water droplets decreases by 8.20 dB and 4.36 dB, respectively. Additionally, when the water-spraying density becomes twice of the designed value, the sound pressure level of water-splashing noise all increases by 3.01 dB for the cooling towers of 300 MW, 600 MW and 1000 MW units. Finally, under the partition water distribution patterns, the change of the sound pressure level is small. For the R s/2 and Rs/3 partition radius (Rs is the radius of water-spraying area), when the water-spraying density ratio between the outer and inner zone increases from 1 to 3, the sound pressure level of water-splashing noise increases by 0.7 dB and 0.3 dB, respectively.


Sign in / Sign up

Export Citation Format

Share Document