scholarly journals Evaluation and Improvement of the Sound Quality of a Diesel Engine Based on Tests and Simulations

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 777 ◽  
Author(s):  
Zhengwei Yang ◽  
Huihua Feng ◽  
Bingjie Ma ◽  
Ammar Abdualrahim Alnor Khalifa

Traditional acoustic evaluation of a diesel engine generally uses the A-weighted sound pressure level (AWSPL) and radiated sound power to assess the noise of an engine prototype present in an experiment. However, this cannot accurately and comprehensively reflect the auditory senses of human subjects during the simulation stage. To overcome such shortage, the Moore–Glasberg loudness and sharpness approach is applied to evaluate and improve the sound quality (SQ) of a 16 V-type marine diesel engine, and synthesizing noise audio files. Through finite element (FE) simulations, the modes of the engine’s block and the average vibrational velocity of the entire engine surface were calculated and compared with the test results. By further applying an automatically matched layer (AML) approach, the engine-radiated sound pressure level (SPL) and sound power contributions of all engine parts were obtained. By analyzing the Moore–Glasberg loudness and sharpness characteristics of three critical sound field points, an improvement strategy of the oil sump was then proposed. After improvement, both the loudness and sharpness decreased significantly. To verify the objective SQ evaluation results, ten noise audio clips of the diesel engine were then synthesized and tested. The subjective evaluation results were in accordance with the simulated analysis. Therefore, the proposed approach to analyze and improve the SQ of a diesel engine is reliable and effective.

2011 ◽  
Vol 338 ◽  
pp. 543-546
Author(s):  
Hu Yu ◽  
Hong Hou ◽  
Liang Sun

In this study we use the CAE technology to compute and reduce the radiated noise of range hood. First, a finite element model of a typical range hood is created using Hypermesh. Then, the surface particle velocity is carried out in Nastran, and the radiated noise is calculated by Sysnoise. Finally, the DOE-based structural optimization is preformed using iSIGHT-FD, in which the sound pressure level at four sensitive points and the radiated sound power are selected as the objective function and the thickness of four panels are adopted as design variable. In addition, the weight of the range hood as a constraint is kept no more than its original weight. As a result, a maximum radiated sound power reduction of 3.66W and a maximum sound pressure level reduction of 4.7 dB are successfully achieved. It shows the CAE technology is a very efficient and effective method for reducing radiated noise.


2011 ◽  
Vol 105-107 ◽  
pp. 74-79
Author(s):  
Zha Gen Ma ◽  
Xue Ying Xu ◽  
Guo Hua Han

As cars become quieter the sound quality of components becomes more critical in the customer perception of car quality. This requires a need of new evaluation method for the specification of component sounds. Considering that high frequency noise plays an important roll for internal noise, the noise signals in the range from 7000Hz to 8000Hz are specially emphasized. Then the acoustic evaluation parameters, such as Sound Pressure Level, Sharpness and Steadiness have been evaluated. Judged from experiences and measuring results, an abnormal noise comes from Generator, through the exchange of Generator, Sound Pressure Level and sharpness were greatly improved. At the same time, subjective evaluation also indicated that there was no complaint any more in passenger compartment. Low Sound Pressure Level, sharpness can lead to perceived high product quality.


2012 ◽  
Vol 226-228 ◽  
pp. 444-447 ◽  
Author(s):  
Yan Fang Hou ◽  
Guo Hua Han ◽  
Xue Ying Xu

As cars become more and more quiet the sound quality of rotary components such as car compressor becomes more important in the customer’s subjective perception of passenger car quality. This needs a new evaluation method which is not only the traditional method like sound pressure level but also Psychoacoustic Metrics to focus the specification of component sounds. This paper on one hand analyzed one car’s abnormal noise reason through the tests, found the main problem frequency band of the compressor, and on the other hand studied the compressor’s psychoacoustic metrics. In this paper the countermeasure of solving this problem was also given, and then noise level and psychoacoustic parameters are compared. Both objective evaluation and subjective evaluation showed that the compressor with the solution not only reduced the sound pressure level, but also improved the car sound quality greatly.


Author(s):  
Ying-Hui Jia ◽  
Fang-Fang Li ◽  
Kun Fang ◽  
Guang-Qian Wang ◽  
Jun Qiu

AbstractRecently strong sound wave was proposed to enhance precipitation. The theoretical basis of this proposal has not been effectively studied either experimentally or theoretically. Based on the microscopic parameters of atmospheric cloud physics, this paper solved the complex nonlinear differential equation to show the movement characteristics of cloud droplets under the action of sound waves. The motion process of individual cloud droplet in a cloud layer in the acoustic field is discussed as well as the relative motion between two cloud droplets. The effects of different particle sizes and sound field characteristics on particle motion and collision are studied to analyze the dynamic effects of thunder-level sound waves on cloud droplets. The amplitude of velocity variation has positive correlation with Sound Pressure Level (SPL) and negative correlation with the frequency of the surrounding sound field. Under the action of low-frequency sound waves with sufficient intensity, individual cloud droplets could be forced to oscillate significantly. The droplet smaller than 40μm can be easily driven by sound waves of 50 Hz and 123.4 dB. The calculation of the collision process of two droplets reveals that the disorder of motion for polydisperse droplets is intensified, resulting in the broadening of the collision time range and spatial range. When the acoustic frequency is less than 100Hz (@ 123.4dB) or the Sound Pressure Level (SPL) is greater than 117.4dB (@ 50Hz), the sound wave can affect the collision of cloud droplets significantly. This study provides theoretical perspective of acoustic effect to the microphysics of atmospheric clouds.


Author(s):  
B. S. Sridhara

Abstract A computer simulation was employed to perform parametric studies on muffler design. Engine exhaust system parameters such as muffler diameter, source-muffler pipe length, number of mufflers, series and parallel installation of mufflers, and the source and termination impedances were considered during the studies. The muffler insertion loss and radiated sound pressure level were predicted for several values of each parameter. An acoustic model consisting of a lumped source-muffler-termination system was used. A scheme was developed using the pressure source model to predict the radiated sound pressure and a simplified expression for the predicted quantity was obtained as a sum of the measured, plane wave and monopole terms. The relationship between the insertion loss and radiated sound pressure level was established for a given set of conditions. A vacuum pump was used as the sound source. An expansion chamber was used as a muffler.


2021 ◽  
Vol 263 (1) ◽  
pp. 5166-5169
Author(s):  
Haram Lee ◽  
Hyunin Jo ◽  
Jin Yong Jeon

In this study, the general sound environment characteristics of open-plan office (OPO) were investigated, and just noticeable difference (JND) of sound pressure level of speech at a distance of 4 m (Lp,A,S,4m) suggested in ISO 3382-3 was suggested. First, in order to understand the sound environment characteristics of OPO, one minute sound sources recorded in 8 offices were collected and physical and psychological acoustic characteristics were analyzed. A total of 30 office workers were subject to subjective evaluation on 8 sound sources, and they were asked to respond to questionnaires related to annoyance, work satisfaction, and speech privacy. Next, to investigate the JND, two computer simulation models identical to those of the actual OPO were implemented, and sound sources each having six different Lp,A,S,4m values were generated through the change of the sound absorption coefficient of the interior finish. The JND of Lp,A,S,4m was presented by performing paired comparison for the same subjects. It is expected that the JND of Lp,A,S,4m proposed in this study can be used for the sound environment rating of OPO.


Author(s):  
Henry A. Scarton ◽  
Kyle R. Wilt

Sound power levels including the distribution into octaves from a large 149 kW (200 horsepower) gyro rock crusher and separate asphalt plant are presented. These NIST-traceable data are needed for estimating sound pressure levels at large distances (such as occurs on adjoining property to a quarry) where atmospheric attenuation may be significant for the higher frequencies. Included are examples of the computed A-weighted sound pressure levels at a distance from the source, including atmospheric attenuation. Substantial low-frequency sound power levels are noted which are greatly reduced in the far-field A-weighted sound pressure level calculations.


2020 ◽  
Vol 34 (14) ◽  
pp. 2050145
Author(s):  
Rennian Li ◽  
Wenna Liang ◽  
Wei Han ◽  
Hui Quan ◽  
Rong Guo ◽  
...  

In order to investigate the turbulence-induced acoustic characteristics of hydrofoils, the flow and sound field for a model NH-15-18-1 asymmetric hydrofoil were calculated based on the mixed method of large eddy simulation (LES) with Lighthill analogy theory. Unsteady fluid turbulent stress source around the hydrofoil were selected as the inducements of quadrupole sound. The average velocity along the mainstream direction was calculated for different Reynolds numbers [Formula: see text]. Compared to experimental measurements, good agreement was seen over a range of [Formula: see text]. The results showed that the larger the [Formula: see text], the larger the vortex intensity, the shorter the vortex initial shedding position to the leading edge of the hydrofoil, and the higher the vortex shedding frequency [Formula: see text]. The maximum sound pressure level (SPL) of the hydrofoil was located at the trailing edge and wake of the hydrofoil, which coincided with the velocity curl [Formula: see text] distribution of the flow field. The maximum SPL of the sound field was consistent with the location of the vortex shedding. There were quadratic positive correlations between the total sound pressure level (TSPL) and the maximum value of the vortex intensity [Formula: see text] and velocity curl, which verified that shedding and diffusion of vortices are the fundamental cause of the generation of the quadrupole source noise.


2019 ◽  
Vol 9 (23) ◽  
pp. 5047
Author(s):  
Yuan-Wu Jiang ◽  
Dan-Ping Xu ◽  
Zhi-Xiong Jiang ◽  
Jun-Hyung Kim ◽  
Sang-Moon Hwang

With the rapid progress in the development of multimedia devices, earphones have become increasingly important as audio output tools. Hybrid earphones combining balanced-armature (BA) and dynamic receivers can produce better performance over a wider range when compared to the earphones with BA receiver alone (BA earphones) or dynamic receiver alone (dynamic earphones). BA and dynamic earphones are multi-physics products that exhibit coupling between the electromagnetic, mechanical, and acoustic domains. In this study, an analysis tool is developed to design a hybrid earphone based on the conventional BA and dynamic earphones. Using the developed analysis tool, an acoustic tube is optimized to match the earphone target curve and obtain improved sound quality. A prototype is manufactured and tested, and the experimental results verify the feasibility and effectiveness of the developed analysis tool. The root-mean-square value of the sound pressure level (SPL) deviation of the hybrid earphone with the optimized acoustic tube is 4.60, whereas those for the dynamic and BA earphones are 8.94 and 6.04, respectively. Thus, it is verified that the frequency response is improved using the hybrid earphone developed herein.


Sign in / Sign up

Export Citation Format

Share Document