Vegetable Oil Based Compressor Oil-optimising of Tribological Characteristics

Author(s):  
P. Chengareddy ◽  
Arumugam Shanmugasundaram
2016 ◽  
Vol 819 ◽  
pp. 499-503 ◽  
Author(s):  
Mohammed Hassan ◽  
Farid Nasir Ani ◽  
Samion Syahrullail

Vegetable oils are bio-fluids that could replace petroleum-based products due to its environment friendly characteristics and becoming an important source of bio-lubricants. The great advantage of vegetable oils is that they are widely available, renewable source of bio-lubricants. Moreover, vegetable oil based lubricant have shown the potential to reduce carbon dioxide and hydrocarbon emissions when operated in engines. There are two ways to use vegetable oil as a bio-lubricant, either use directly the neat vegetable oil without any additives or use with certain blending ratio of the vegetable oil with mineral lubricant. In this paper, the influences of the normal load on the tribological characteristics for the blending of two types of vegetable oils were investigated and compared with commercial lubricant oil by the use of the four ball tribotester. The vegetable blends are RBD palm olein and Jatropha oil ratio of RBD40/J60. All experimental works were conforming to ASTM D4172. The results exhibited that the both blending of RBD palm olein and Jatropha oil has lower the wear scar of ball bearings and coefficient of friction compared to commercial lubricant oil. As a conclusion, the blending of RBD palm olein and Jatropha oil has better performance compared to commercial lubricant oil or neat RBD palm olein.


2016 ◽  
Vol 78 (9-2) ◽  
Author(s):  
Mohammed Hassan ◽  
S. Syahrullail ◽  
Farid Nasir Ani

The oil derived from vegetables has been seen as an alternative to mineral oils for lubricants because of certain inherent technical properties, renewable source and their abilities to biodegrade. Vegetable oil is known to have a high viscosity index with a higher lubricity value compared to mineral oil. Despite its potentiality as a candidate alternative, vegetable oil has several limitations. It has a low wear resistance, and it is highly sensitive to temperatures with tribological characteristics. The majority of technical solutions, including additivation, chemical alterations, and blending, are being proposed as means of overcoming the listed limitations. This study seeks to investigate the characteristics of cactus oil with respect to its use as a bio-lubricant as well as the characteristics of environmentally friendly vegetable oil when they are mixed with mineral oils as alternative oil for petroleum, using the four-ball tribotester. The volumetric blending ratio was varied (20% to 80%) and these blends were performed at 1200 rpm, for one hour, with 40 kg of load at a temperature of 75ºC (ASTM D4172-B) standard. According to the results, it was found that the lowest wear scar diameter was 431.23µm, which was identified in the blend of 20% cactus oil with 80% mineral oil which symbolized by (CC20%), compared to that of neat cactus oil at 669.16 µm and mineral oil at 546.46 µm.In addition, the result also indicates that a 80% addition of cactus oil, the coefficient of friction tends to decrease compared to the values of neat cactus oil. Finally, it is concluded, the blends of cactus oil with commercial lubricant oil have better performance compared to commercial lubricant oil or neat cactus oil.


2019 ◽  
Vol 72 (04) ◽  
pp. 370-374
Author(s):  
Sukthija . ◽  
Vivek Sharma . ◽  
Sumit Arora . ◽  
Richa Singh . ◽  
P N Raju . ◽  
...  

2014 ◽  
Vol 2014 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Chinenyenwa Nweke ◽  
◽  
Philomena Igbokwe ◽  
Joseph Nwabanne ◽  
◽  
...  

2020 ◽  
Vol 86 (4) ◽  
pp. 61-65
Author(s):  
M. V. Abramchuk ◽  
R. V. Pechenko ◽  
K. A. Nuzhdin ◽  
V. M. Musalimov

A reciprocating friction machine Tribal-T intended for automated quality control of the rubbing surfaces of tribopairs is described. The distinctive feature of the machine consists in implementation of the forced relative motion due to the frictional interaction of the rubbing surfaces fixed on the drive and conjugate platforms. Continuous processing of the signals from displacement sensors is carried out under conditions of continuous recording of mutual displacements of loaded tribopairs using classical approaches of the theory of automatic control to identify the tribological characteristics. The machine provides consistent visual real time monitoring of the parameters. The MATLAB based computer technologies are actively used in data processing. The calculated tribological characteristics of materials, i.e., the dynamic friction coefficient, damping coefficient and measure of the surface roughness, are presented. The tests revealed that a Tribal-T reciprocating friction machine is effective for real-time study of the aforementioned tribological characteristics of materials and can be used for monitoring of the condition of tribo-nodes of machines and mechanisms.


Sign in / Sign up

Export Citation Format

Share Document