scholarly journals Design, synthesis, in silico studies and in vitro evaluation of isatin-pyridine oximes hybrids as novel acetylcholinesterase reactivators

2021 ◽  
Vol 36 (1) ◽  
pp. 1370-1377
Author(s):  
Daniel A. S. Kitagawa ◽  
Rafael B. Rodrigues ◽  
Thiago N. Silva ◽  
Wellington V. dos Santos ◽  
Vinicius C. V. da Rocha ◽  
...  
2021 ◽  
pp. 105123
Author(s):  
Derya Osmaniye ◽  
Şennur Görgülü ◽  
Begum Nurpelin Saglik ◽  
Serkan Levent ◽  
Yusuf Ozkay ◽  
...  

2021 ◽  
pp. 131198
Author(s):  
Derya Osmaniye ◽  
Begum Nurpelin Saglik ◽  
Serkan Levent ◽  
Sinem Ilgın ◽  
Yusuf Ozkay ◽  
...  

2022 ◽  
Vol 26(1) (26(1)) ◽  
pp. 1037-1044
Author(s):  
Harun USLU ◽  
Begüm Nurpelin SAĞLIK ◽  
Derya OSMANİYE ◽  
Kadriye BENKLİ

2020 ◽  
Vol 186 ◽  
pp. 111863 ◽  
Author(s):  
Muhammad Saeed Jan ◽  
Sajjad Ahmad ◽  
Fida Hussain ◽  
Ashfaq Ahmad ◽  
Fawad Mahmood ◽  
...  

2020 ◽  
Vol 99 ◽  
pp. 103784
Author(s):  
Balakishan Bhukya ◽  
Aparna Shukla ◽  
Vinita Chaturvedi ◽  
Priyanka Trivedi ◽  
Shailesh Kumar ◽  
...  

Author(s):  
Pankaj Wadhwa ◽  
Priti Jain ◽  
Hemant R. Jadhav

Aim:: To design, synthesis and in vitro evaluation of 4-oxo-6-substituted phenyl-2-thioxo1,2,3,4- tetrahydropyrimidine-5-carbonitrile derivatives as HIV integrase strand transfer inhibitors. Background:: Human immunodeficiency virus-1 (HIV-1), a member of retroviridae family, is the primary causative agent of acquired immunodeficiency syndrome (AIDS). Three enzymes viz: integrase (IN), reverse transcriptase (RT) and protease play important role in its replication cycle. HIV-1 integrase is responsible for the incorporation of viral DNA into human chromosomal DNA by catalyzing two independent reactions, 3′-processing (3′-P) and strand transfer (ST), which are observed as the “point of no-return” in HIV infection. Objective:: To develop inhibitors against HIV integrase strand transfer step. Methods:: Our previous results indicated that tetrahydro pyrimidine-5-carboxamide derivatives are potent HIV-1 IN inhibitors (unpublished results from our laboratory). Taking clue from above studies and our own experience, we hypothesized 4- oxo-6-substituted phenyl-2-thioxo1,2,3,4-tetrahydropyrimidine-5-carbonitrile analogues (14a to 14n) as inhibitors of HIV-1 Integrase strand transfer. As shown in figure 2, prototype compound 14 can be viewed as hybrid structure having characteristics of dihydropyrimidine derivatives 10-12 and tyrphostin 13. Result:: A total of fourteen derivatives of 4-oxo-6-substituted phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile (14a-14n) were synthesized and evaluated using HIV-1 Integrase Assay Kit (Xpressbio Life Science Products, USA). The percentage inhibition of all compounds was investigated at 10 μM concentration and IC50 value of few highly active compounds was studied. The obtained results were validated by in silico molecular docking study using Glide (maestro version 9.3, Schrödinger suite) in extra precision (XP) mode. Conclusion:: Fourteen 4-oxo-6-substituted phenyl-2-thioxo 1,2,3,4-tetrahydropyrimidine-5-carbonitrile analogues were synthesized and evaluated for HIV-1 IN inhibitory activity. Three compounds 14a, 14e, and 14h exhibited significant percentage inhibition of HIV-1 IN. There was good in vitro - in silico correlation. However, none of the derivative was active against HIV-1 and HIV-2 below their cytotoxic concentration. It needs to be seen whether these compounds can be explored further for their anti-HIV or cytotoxic potential.


2021 ◽  
pp. 105430
Author(s):  
Harun USLU ◽  
Derya OSMANİYE ◽  
Begüm Nurpelin SAĞLIK ◽  
Serkan LEVENT ◽  
Yusuf ÖZKAY ◽  
...  

2013 ◽  
Vol 23 (1) ◽  
pp. 317-328 ◽  
Author(s):  
Nanda Kumar Yellapu ◽  
Navya Atluri ◽  
Kalpana Kandlapalli ◽  
Ravendra Babu Kilaru ◽  
Jhansi Rani Vangavaragu ◽  
...  

2019 ◽  
Vol 27 (23) ◽  
pp. 115148 ◽  
Author(s):  
Mina Saeedi ◽  
Maryam Mohammadi-Khanaposhtani ◽  
Mohammad Sadegh Asgari ◽  
Nafiseh Eghbalnejad ◽  
Somaye Imanparast ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4342
Author(s):  
Begüm Nurpelin Sağlık ◽  
Osman Cebeci ◽  
Ulviye Acar Çevik ◽  
Derya Osmaniye ◽  
Serkan Levent ◽  
...  

Monoamine oxidase (MAO) isoenzymes are very important drug targets among neurological disorders. Herein, novel series of thiazolylhydrazine-piperazine derivatives were designed, synthesized and evaluated for their MAO-A and -B inhibitory activity. The structures of the synthesized compounds were assigned using different spectroscopic techniques such as 1H-NMR, 13C-NMR and HRMS. Moreover, the prediction of ADME (Absorption, Distribution, Metabolism, Elimination) parameters for all of the compounds were performed using in silico method. According to the enzyme inhibition results, the synthesized compounds showed the selectivity against MAO-A enzyme inhibition. Compounds 3c, 3d and 3e displayed significant MAO-A inhibition potencies. Among them, compound 3e was found to be the most effective derivative with an IC50 value of 0.057 ± 0.002 µM. Moreover, it was seen that this compound has a more potent inhibition profile than the reference inhibitors moclobemide (IC50 = 6.061 ± 0.262 µM) and clorgiline (IC50 = 0.062 ± 0.002 µM). In addition, the enzyme kinetics were performed for compound 3e and it was determined that this compound had a competitive and reversible inhibition type. Molecular modeling studies aided in the understanding of the interaction modes between this compound and MAO-A. It was found that compound 3e had significant and important binding property.


Sign in / Sign up

Export Citation Format

Share Document