chromosomal dna
Recently Published Documents


TOTAL DOCUMENTS

1870
(FIVE YEARS 191)

H-INDEX

102
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Jackson Luu ◽  
Connor M. Mott ◽  
Olivia R. Schreiber ◽  
Holly M. Giovinco ◽  
Melanie Betchen ◽  
...  

Bacillus subtilis produces dormant, highly resistant endospores in response to extreme environmental stresses or starvation. These spores are capable of persisting in harsh environments for many years, even decades, without essential nutrients. Part of the reason that these spores can survive such extreme conditions is because their chromosomal DNA is well protected from environmental insults. The α/β-type small acid-soluble proteins (SASPs) coat the spore chromosome, which leads to condensation and protection from such insults. The histone-like protein HBsu has been implicated in the packaging of the spore chromosome and is believed to be important in modulating SASP-mediated alterations to the DNA, including supercoiling and stiffness. Previously, we demonstrated that HBsu is acetylated at seven lysine residues, and one physiological function of acetylation is to regulate chromosomal compaction. Here, we investigate if the process of sporulation or the resistance properties of mature spores are influenced by the acetylation state of HBsu. Using our collection of point mutations that mimic the acetylated and unacetylated forms of HBsu, we first determined if acetylation affects the process of sporulation, by determining the overall sporulation frequencies. We found that specific mutations led to decreases in sporulation frequency, suggesting that acetylation of HBsu at some sites, but not all, is required to regulate the process of sporulation. Next, we determined if the spores produced from the mutant strains were more susceptible to heat, ultraviolet (UV) radiation and formaldehyde exposure. We again found that altering acetylation at specific sites led to less resistance to these stresses, suggesting that proper HBsu acetylation is important for chromosomal packaging and protection in the mature spore. Interestingly, the specific acetylation patterns were different for the sporulation process and resistance properties of spores, which is consistent with the notion that a histone-like code exists in bacteria. We propose that specific acetylation patterns of HBsu are required to ensure proper chromosomal arrangement, packaging, and protection during the process of sporulation.


2021 ◽  
Vol 78 (6) ◽  
pp. 414-425
Author(s):  
Nourdine Baik ◽  
◽  
Houda Bandou ◽  
Miriam Gonzales Garcia ◽  
Elena Benavente ◽  
...  

In continuation of our previous research we carried out the karyological investigation of 53 populations of four Aegilops species (A. geniculata, A. triuncialis, A. ventricosa, and A. neglecta) sampled in different eco-geographical habitats in Algeria. The genetic variability of the chromosomal DNA loci of the same collection of Aegilops is highlighted by the Fluorescence In Situ Hybridization technique (FISH) using three probes: 5S rDNA, 45S rDNA, and repetitive DNA (pSc119.2). We found that the two rDNA loci (5S and 45S) hybridized with some chromosomes and showed a large genetic polymorphism within and between the four Aegilops species, while the repetitive DNA sequences (pSc119.2) hybridized with all chromosomes and differentiated the populations of the mountains with a humid bioclimate from the populations of the steppe regions with an arid bioclimate. However, the transposition of the physical maps of the studied loci (5S rDNA, 45S rDNA, and pSc119.2) with those of other collections revealed the existence of new loci in Aegilops from Algeria.


2021 ◽  
Author(s):  
Phillip Wyss ◽  
Carol Song ◽  
Minou Bina

In mammals, Imprinting Control Regions (ICRs) regulate a subset of genes in a parent-of-origin-specific manner. In both human and mouse, previous studies identified a set of CpG-rich motifs that occurred as clusters in ICRs and germline Differentially Methylated Regions (gDMRs). These motifs consist of the ZFP57 binding site (ZFBS) overlapping a subset of MLL binding units known as MLL morphemes. Furthermore, by creating plots for displaying the density of these overlaps, it became possible to locate known and candidate ICRs in mouse and human genomic DNA. Since genomic imprinting impacts many developmental and key physiological processes, we performed genome-wide analyses to create plots displaying the density of the CpG-rich motifs (ZFBS-morph overlaps) along Bos Taurus chromosomal DNA. We tailored our datasets so that they could be displayed on the UCSC genome browser (the build bosTau8). On the genome browser, we could view the ZFP57 binding sites, the ZFBS-morph overlaps, and peaks in the density-plots in the context of cattle RefSeq Genes, Non-Cow RefSeq Genes, CpG islands, and Single nucleotide polymorphisms (SNPs). Our datasets revealed the correspondence of peaks in plots to known and deduced ICRs in Bos Taurus genomic DNA. We illustrate that by uploading our datasets onto the UCSC genome browser, we could discover candidate ICRs in cattle DNA. In enlarged views, we could pinpoint the genes in the vicinity of candidate ICRs and thus discover potential imprinted genes.


2021 ◽  
Author(s):  
Giulia Orazi ◽  
Alan J Collins ◽  
Rachel J Whitaker

The genus Neisseria includes two pathogenic species, N. gonorrhoeae and N. meningitidis, and numerous commensal species. Neisseria species frequently exchange DNA with one other, primarily via transformation and homologous recombination, and via multiple types of mobile genetic elements (MGEs). Few Neisseria bacteriophages (phages) have been identified and their impact on bacterial physiology is poorly understood. Furthermore, little is known about the range of species that Neisseria phages can infect. In this study, we used three virus prediction tools to scan 248 genomes of 21 different Neisseria species and identified 1302 unique predicted prophages. Using comparative genomics, we found that many predictions are dissimilar from other prophages and MGEs previously described to infect Neisseria species. We also identified similar predicted prophages in genomes of different Neisseria species. Additionally, we examined CRISPR-Cas targeting of each Neisseria genome and predicted prophage. While CRISPR targeting of chromosomal DNA appears to be common among several Neisseria species, we found that 20% of the prophages we predicted are targeted significantly more than the rest of the bacterial genome in which they were identified (i.e., backbone). Furthermore, many predicted prophages are targeted by CRISPR spacers encoded by other species. We then used these results to infer additional host species of known Neisseria prophages and predictions that are highly targeted relative to the backbone. Together, our results suggest that we have identified novel Neisseria prophages, several of which may infect multiple Neisseria species. These findings have important implications for understanding horizontal gene transfer between members of this genus. IMPORTANCE: Drug-resistant N. gonorrhoeae is a major threat to human health. Commensal Neisseria species are thought to serve as reservoirs of antibiotic resistance and virulence genes for the pathogenic species N. gonorrhoeae and N. meningitidis. Therefore, it is important to understand both the diversity of mobile genetic elements (MGEs) that can mediate horizontal gene transfer within this genus, and the breadth of species these MGEs can infect. In particular, few bacteriophages (phages) have been identified and characterized in Neisseria species. In this study, we identified a large number of candidate phages integrated within the genomes of commensal and pathogenic Neisseria species, many of which appear to be novel phages. Importantly, we discovered extensive interspecies targeting of predicted phages by Neisseria CRISPR-Cas systems, which may reflect their movement between different species. Uncovering the diversity and host range of phages is essential for understanding how they influence the evolution of their microbial hosts.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Magdalena Smolarz ◽  
Marcin Zawrotniak ◽  
Dorota Satała ◽  
Maria Rapala-Kozik

Neutrophils represent the first line of innate host defense. The ability to inhibit the development of infections is associated with the involvement of several fighting strategies. The still poorly understood mechanism is netosis, involving the release of Extracellular Neutrophil Traps (NETs). NETs are complexes of chromosomal DNA and granule content. Such a web-like structure inhibits the spread of invaders. Netosis plays a significant role in combating Candida albicans infections. It has been shown that several factors, composing C. albicans cell surface mediate NETs production. However, the development of difficult to eradicate fungal infection is associated with the formation of the biofilm structure, which partially protects the pathogen cells from contact with the host’s immune system. One of the reasons for the creation of a such protective environment is the production of the extracellular matrix (ECM). The major components of the C. albicans ECM layer are lipids, proteins, carbohydrates but also extracellular nucleic acids, among which we observed a significant RNA content. Considering that the ECM consisting of RNA molecules is one of the first lines of contact between biofilms and neutrophils, our current studies aimed to assess the potential role of extracellular RNA in the triggering of the netosis process by human neutrophils in vitro. We showed that RNA purified from C. albicans biofilm structure and the whole cells have the capability to induction of ROS-dependent netosis pathway. Additionally, cell migration analysis indicate that RNA molecules may also be an effective chemotactic agent. This work was supported by NCN (2019/33/B/NZ6/02284).


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261088
Author(s):  
Lotisha Garvin ◽  
Rebecca Vande Voorde ◽  
Mary Dickinson ◽  
Steven Carrell ◽  
Kevin Hybiske ◽  
...  

Plasmid transformation of chlamydiae has created new opportunities to investigate host–microbe interactions during chlamydial infections; however, there are still limitations. Plasmid transformation requires a replicon derived from the native Chlamydia plasmid, and these transformations are species-specific. We explored the utility of a broad host-range plasmid, pBBR1MCS-4, to transform chlamydiae, with a goal of simplifying the transformation process. The plasmid was modified to contain chromosomal DNA from C. trachomatis to facilitate homologous recombination. Sequences flanking incA were cloned into the pBBR1MCS-4 vector along with the GFP:CAT cassette from the pSW2-GFP chlamydial shuttle vector. The final plasmid construct, pBVR2, was successfully transformed into C. trachomatis strain L2-434. Chlamydial transformants were analyzed by immunofluorescence microscopy and positive clones were sequentially purified using limiting dilution. PCR and PacBio-based whole genome sequencing were used to determine if the plasmid was maintained within the chromosome or as an episome. PacBio sequencing of the cloned transformants revealed allelic exchange events between the chromosome and plasmid pBVR2 that replaced chromosomal incA with the plasmid GFP:CAT cassette. The data also showed evidence of full integration of the plasmid into the bacterial chromosome. While some plasmids were fully integrated, some were maintained as episomes and could be purified and retransformed into E. coli. Thus, the plasmid can be successfully transformed into chlamydia without a chlamydial origin of replication and can exist in multiple states within a transformed population.


2021 ◽  
Author(s):  
Joanna Morcinek-Orłowska ◽  
Beata Maria Walter ◽  
Raphaël Forquet ◽  
Dominik Cysewski ◽  
Maxime Carlier ◽  
...  

AbstractE. coli and many other bacterial species can alter their cell cycle according to nutrient availability. Under optimal conditions bacteria grow and divide very fast but they slow down the cell cycle when conditions deteriorate. This adaptability is underlined by mechanisms coordinating cell growth with duplication of genetic material and cell division. Several mechanisms regulating DNA replication process in E. coli have been described with biochemical details so far. Nevertheless we still don’t fully understand the source of remarkable precision that allows bacterial cells to coordinate their growth and chromosome replication. To shed light on regulation of E. coli DNA replication at systemic level, we used affinity purification coupled with mass spectrometry (AP-MS) to characterize protein-protein interactions (PPIs) formed by key E. coli replication proteins, under disparate bacterial growth conditions and phases. We present the resulting dynamic replication protein interaction network (PIN) and highlight links between DNA replication and several cellular processes, like outer membrane synthesis, RNA degradation and modification or starvation response.ImportanceDNA replication is a vital process, ensuring propagation of genetic material to progeny cells. Despite decades of studies we still don’t fully understand how bacteria coordinate chromosomal DNA duplication with cell growth and cell division under optimal and stressful conditions. At molecular level, regulation of processes, including DNA replication, is often executed through direct protein-protein interactions (PPIs). In this work we present PPIs formed by the key E. coli replication proteins under three different bacterial growth conditions. We show novel PPIs with confirmed impact on chromosomal DNA replication. Our results provide also alternative explanations of genetic interactions uncovered before by others for E.coli replication machinery.


2021 ◽  
Vol 118 (50) ◽  
pp. e2116522118
Author(s):  
Sabyasachi Das ◽  
Jonathan P. Rast ◽  
Jianxu Li ◽  
Mitsutaka Kadota ◽  
John A. Donald ◽  
...  

Three types of variable lymphocyte receptor (VLR) genes, VLRA, VLRB, and VLRC, encode antigen recognition receptors in the extant jawless vertebrates, lampreys and hagfish. The somatically diversified repertoires of these VLRs are generated by serial stepwise copying of leucine-rich repeat (LRR) sequences into an incomplete germline VLR gene. Lymphocytes that express VLRA or VLRC are T cell–like, while VLRB-expressing cells are B cell–like. Here, we analyze the composition of the VLRB locus in different jawless vertebrates to elucidate its configuration and evolutionary modification. The incomplete germline VLRB genes of two hagfish species contain short noncoding intervening sequences, whereas germline VLRB genes in six representative lamprey species have much longer intervening sequences that exhibit notable genomic variation. Genomic clusters of potential LRR cassette donors, fragments of which are copied to complete VLRB gene assembly, are identified in Japanese lamprey and sea lamprey. In the sea lamprey, 428 LRR cassettes are located in five clusters spread over a total of 1.7 Mbp of chromosomal DNA. Preferential usage of the different donor cassettes for VLRB assemblage is characterized in our analysis, which reveals evolutionary modifications of the lamprey VLRB genes, elucidates the organization of the complex VLRB locus, and provides a comprehensive catalog of donor VLRB cassettes in sea lamprey and Japanese lamprey.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eunice Fabian-Morales ◽  
Carmen Fernández-Cáceres ◽  
Adriana Gudiño ◽  
Marco A. Andonegui Elguera ◽  
Karla Torres-Arciga ◽  
...  

Marijuana (Cannabis sp.) is among the most recurred controlled substances in the world, and there is a growing tendency to legalize its possession and use; however, the genotoxic effects of marijuana remain under debate. A clear definition of marijuana's genotoxic effects remains obscure by the simultaneous consumption of tobacco and other recreational substances. In order to assess the genotoxic effects of marijuana and to prevent the bias caused by the use of substances other than cannabis, we recruited marijuana users that were sub-divided into three categories: (1) users of marijuana-only (M), (2) users of marijuana and tobacco (M+T), and (3) users of marijuana plus other recreative substances or illicit drugs (M+O), all the groups were compared against a non-user control group. We quantified DNA damage by detection of γH2AX levels and quantification of micronuclei (MN), one of the best-established methods for measuring chromosomal DNA damage. We found increased levels of γH2AX in peripheral blood lymphocytes from the M and M+T groups, and increased levels of MNs in cultures from M+T group. Our results suggest a DNA damage increment for M and M+T groups but the extent of chromosomal damage (revealed here by the presence of MNs and NBuds) might be related to the compounds found in tobacco. We also observed an elevated nuclear division index in all marijuana users in comparison to the control group suggesting a cytostatic dysregulation caused by cannabis use. Our study is the first in Mexico to assess the genotoxicity of marijuana in mono-users and in combination with other illicit drugs.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Martin Houlard ◽  
Erin E Cutts ◽  
Muhammad S Shamim ◽  
Jonathan Godwin ◽  
David Weisz ◽  
...  

The dramatic change in morphology of chromosomal DNAs between interphase and mitosis is one of the defining features of the eukaryotic cell cycle. Two types of enzymes, namely cohesin and condensin confer the topology of chromosomal DNA by extruding DNA loops. While condensin normally configures chromosomes exclusively during mitosis, cohesin does so during interphase. The processivity of cohesin’s loop extrusion during interphase is limited by a regulatory factor called WAPL, which induces cohesin to dissociate from chromosomes via a mechanism that requires dissociation of its kleisin from the neck of SMC3. We show here that a related mechanism may be responsible for blocking condensin II from acting during interphase. Cells derived from patients affected by microcephaly caused by mutations in the MCPH1 gene undergo premature chromosome condensation but it has never been established for certain whether MCPH1 regulates condensin II directly. We show that deletion of Mcph1 in mouse embryonic stem cells unleashes an activity of condensin II that triggers formation of compact chromosomes in G1 and G2 phases, which is accompanied by enhanced mixing of A and B chromatin compartments, and that this occurs even in the absence of CDK1 activity. Crucially, inhibition of condensin II by MCPH1 depends on the binding of a short linear motif within MCPH1 to condensin II's NCAPG2 subunit. We show that the activities of both Cohesin and Condensin II may be restricted during interphase by similar types of mechanisms as MCPH1's ability to block condensin II's association with chromatin is abrogated by the fusion of SMC2 with NCAPH2. Remarkably, in the absence of both WAPL and MCPH1, cohesin and condensin II transform chromosomal DNAs of G2 cells into chromosomes with a solenoidal axis showing that both cohesin and condensin must be tightly regulated to adjust the structure of chromatids for their successful segregation.


Sign in / Sign up

Export Citation Format

Share Document