Convergence rate of Euler scheme for time-inhomogeneous SDEs involving the local time of the unknown process

2020 ◽  
Vol 36 (3) ◽  
pp. 452-472
Author(s):  
Mohamed Bourza ◽  
Mohsine Benabdallah
Bernoulli ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 312-347
Author(s):  
Mireille Bossy ◽  
Jean-François Jabir ◽  
Kerlyns Martínez

2003 ◽  
Vol 3 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Dejan Bojović

Abstract In this paper we consider the first initial boundary-value problem for the heat equation with variable coefficients in a domain (0; 1)x(0; 1)x(0; T]. We assume that the solution of the problem and the coefficients of the equation belong to the corresponding anisotropic Sobolev spaces. Convergence rate estimate which is consistent with the smoothness of the data is obtained.


Author(s):  
Abdul-Rashid Ramazanov ◽  
V.G. Magomedova

For the function $f(x)=\exp(-x)$, $x\in [0,+\infty)$ on grids of nodes $\Delta: 0=x_0<x_1<\dots $ with $x_n\to +\infty$ we construct rational spline-functions such that $R_k(x,f, \Delta)=R_i(x,f)A_{i,k}(x)\linebreak+R_{i-1}(x, f)B_{i,k}(x)$ for $x\in[x_{i-1}, x_i]$ $(i=1,2,\dots)$ and $k=1,2,\dots$ Here $A_{i,k}(x)=(x-x_{i-1})^k/((x-x_{i-1})^k+(x_i-x)^k)$, $B_{i,k}(x)=1-A_{i,k}(x)$, $R_j(x,f)=\alpha_j+\beta_j(x-x_j)+\gamma_j/(x+1)$ $(j=1,2,\dots)$, $R_j(x_m,f)=f(x_m)$ при $m=j-1,j,j+1$; we take $R_0(x,f)\equiv R_1(x,f)$. Bounds for the convergence rate of $R_k(x,f, \Delta)$ with $f(x)=\exp(-x)$, $x\in [0,+\infty)$, are found.


Sign in / Sign up

Export Citation Format

Share Document