Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal–ceramic–metal layers in thermal environment using Reddy's third-order shear deformation shell theory

2017 ◽  
Vol 26 (3) ◽  
pp. 248-259 ◽  
Author(s):  
Nguyen Dinh Khoa ◽  
Hoang Thi Thiem ◽  
Nguyen Dinh Duc
2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Nabeel T. Alshabatat ◽  
Mohammad Zannon

In the present work, a study on natural frequencies of functionally graded materials (FGM) circular cylindrical shells is presented. TheFGM is considered to be a mixture of two materials. The volumetric fractions are considered to vary in the radial direction (i.e., through the thickness) in compliance with a conventional power-law distribution. The equivalent material properties are estimated based on the Voigt model. The analysis of the FGM cylindrical shells is performed using the third-order shear deformation shell theory and the principle of virtual displacements. Moreover, the third-order shear deformation shell theory coupled with Carrera’s unified formulation is applied for the derivation of the governing equations associated with the free vibration of circular cylindrical shells. The accuracy of this method is examined by comparing the obtained numerical results with other previously published results. Additionally, parametric studies are performed for FGM cylindrical shells with several boundary conditions in order to show the effect of several design variables on the natural frequencies such as the power-law exponent, the circumferential wave number, the length to radius ratio and the thickness to radius ratio.


2017 ◽  
Vol 21 (3) ◽  
pp. 938-972 ◽  
Author(s):  
Dao Van Dung ◽  
Nguyen Thi Nga ◽  
Pham Minh Vuong

This paper investigates analytically nonlinear buckling and postbuckling of functionally graded sandwich circular thick cylindrical shells filled inside by Pasternak two-parameter elastic foundations under thermal loads and axial compression loads. Shells are reinforced by closely spaced functionally graded material (FGM) rings and stringers. The temperature field is taken into account. Two general Sigmoid law and general power law, with four models of stiffened FGM sandwich cylindrical shell, are proposed. Using the Reddy’s third-order shear deformation shell theory (TSDT), stress function, and Lekhnitsky’s smeared stiffeners technique, the governing equations are derived. The closed form to determine critical axial load and postbuckling load-deflection curves are obtained by the Galerkin method. The effects of the face sheet thickness to total thickness ratio, stiffener, foundation, material, and dimensional parameters on critical thermal loads, critical mechanical loads and postbuckling behavior of shells are analyzed. In addition, this paper shows that for thin shells we can use the classical shell theory to investigate stability behavior of shell, but for thicker shells the use of TSDT for analyzing nonlinear stability of shell is necessary and suitable.


2019 ◽  
Vol 11 (05) ◽  
pp. 1950045 ◽  
Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Cao Van Doan ◽  
Nguyen Thoi Trung

A new analytical approach to investigate the nonlinear buckling and postbuckling of the sandwich functionally graded circular cylindrical shells reinforced by ring and stringer or spiral stiffeners subjected to external pressure is presented in this paper. By employing the Donnell shell theory, the geometrical nonlinearity in Von Kármán sense and developed Lekhnitskii’s smeared stiffener technique, the governing equations of sandwich functionally graded circular cylindrical shells are derived. Resulting equations are solved by applying the Galerkin method to obtain the explicit expression of critical buckling external pressure load and postbuckling load–deflection curve. Effects of spiral stiffeners, thermal environment, external pressure, and geometrical parameters on nonlinear buckling behavior of sandwich functionally graded circular cylindrical shells are shown in numerical results.


Sign in / Sign up

Export Citation Format

Share Document