Component model synthesis using model updating with neural networks

Author(s):  
Heejun Sung ◽  
Seongmin Chang ◽  
Maenghyo Cho
2011 ◽  
Vol 71-78 ◽  
pp. 4501-4505
Author(s):  
Ming Chen ◽  
Wan Zhou

Although modern bridge are carefully designed and well constructed, damage may occur in them due to unexpected causes. Currently, many different techniques have been proposed and investigated in bridge condition assessment. However, evaluation efficiency of condition assessment has not been paid much attention by the researchers. A fast evaluation of the urban railway bridge condition based on the cloud computing is presented. In this paper dynamic FE model and Artificial neural networks technique is applied to model updating. The cloud computing model provides the basis for fast analyses. It was found that when applied to the actually railway bridges, the proposed method provided results similar to those obtained by experts, but can improve efficiency of bridge


Author(s):  
Ali Mardanshahi ◽  
Masoud Mardanshahi ◽  
Ahmad Izadi

The main idea of this paper is to propose a nondestructive evaluation (NDE) system for two types of damages, core cracking and skin/core debonding, in fiberglass/foam core sandwich structures based on the inverse eigensensitivity-based finite element model updating using the modal test results, and the artificial neural networks. First, the modal testing was conducted on the fabricated fiberglass/foam core sandwich specimens, in the intact and damaged states, and the natural frequencies were extracted. Finite element modeling and inverse eigensensitivity-based model updating of the intact and damaged sandwich structures were conducted and the parameters of the models were identified. Afterward, the updated finite element models were employed to generate a large dataset of the first five harmonic frequencies of the damaged sandwich structures with different damage sizes and locations. This dataset was adopted to train the machine learning models for detection, localization, and size estimation of the core cracking and skin/core debonding damages. A multilayer perceptron neural network classification model was used for detection of types of damages and also a multilayer perceptron neural network regression model was fitted to the dataset for automatically estimation of the locations and dimensions of damages. This intelligent system of damage quantification was also used to make predictions on real damaged specimens not seen by the system. The results indicated that the extracted natural frequencies from the accurate finite element model, in coordination with the experimental data, and using the artificial neural networks can provide an effective system for nondestructive evaluation of foam core sandwich structures.


2011 ◽  
Vol 121-126 ◽  
pp. 1363-1366
Author(s):  
Shi Lei Zhang ◽  
Shao Feng Chen ◽  
Huan Ding Wang ◽  
Wei Wang

Based on the artificial neural network, the parameters of a steel truss are identified. And the finite element model of truss is corrected. In order to improve the efficiency of model updating by artificial neural networks, the momentum is introduced into the back propagation algorithm. Based on the theory of probability and mathematical statistics, the expectation confidence interval of the measured deflections and strains is obtained. In this way, the samples to train the neural network are optimized. The numerical results show that the back propagation neural network proposed on this paper is able to correct the finite element model of the truss effectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Rumian Zhong ◽  
Zhouhong Zong ◽  
Jie Niu ◽  
Sujing Yuan

Based on the basic theory of wavelet neural networks and finite element model updating method, a basic framework of damage prognosis method is proposed in this paper. Firstly, a damaged I-steel beam model testing is used to verify the feasibility and effectiveness of the proposed damage prognosis method. The results show that the predicted results of the damage prognosis method and the measured results are very well consistent, and the maximum error is less than 5%. Furthermore, Xinyihe Bridge in the Beijing-Shanghai Highway is selected as the engineering background, and the damage prognosis is conducted based on the data from the structural health monitoring system. The results show that the traffic volume will increase and seasonal differences will decrease in the next year and a half. The displacement has a slight increase and seasonal characters in the critical section of mid span, but the strain will increase distinctly. The analysis results indicate that the proposed method can be applied to the damage prognosis of girder bridge structures and has the potential for the bridge health monitoring and safety prognosis.


2002 ◽  
Vol 249 (5) ◽  
pp. 867-883 ◽  
Author(s):  
C.C. CHANG ◽  
T.Y.P. CHANG ◽  
Y.G. XU ◽  
W.M. TO

Sign in / Sign up

Export Citation Format

Share Document