scholarly journals Impact of in-situ gas liberation for enhanced oil recovery and CO2 storage in liquid-rich shale reservoirs

Author(s):  
Pedram Mahzari ◽  
Adrian P. Jones ◽  
Eric H. Oelkers
2020 ◽  
Vol 146 ◽  
pp. 02002
Author(s):  
Zachary Paul Alcorn ◽  
Sunniva B. Fredriksen ◽  
Mohan Sharma ◽  
Tore Føyen ◽  
Connie Wergeland ◽  
...  

This paper presents experimental and numerical sensitivity studies to assist injection strategy design for an ongoing CO2 foam field pilot. The aim is to increase the success of in-situ CO2 foam generation and propagation into the reservoir for CO2 mobility control, enhanced oil recovery (EOR) and CO2 storage. Un-steady state in-situ CO2 foam behavior, representative of the near wellbore region, and steady-state foam behavior was evaluated. Multi-cycle surfactant-alternating gas (SAG) provided the highest apparent viscosity foam of 120.2 cP, compared to co-injection (56.0 cP) and single-cycle SAG (18.2 cP) in 100% brine saturated porous media. CO2 foam EOR corefloods at first-contact miscible (FCM) conditions showed that multi-cycle SAG generated the highest apparent foam viscosity in the presence of refined oil (n-Decane). Multi-cycle SAG demonstrated high viscous displacement forces critical in field implementation where gravity effects and reservoir heterogeneities dominate. At multiple-contact miscible (MCM) conditions, no foam was generated with either injection strategy as a result of wettability alteration and foam destabilization in presence of crude oil. In both FCM and MCM corefloods, incremental oil recoveries were on average 30.6% OOIP regardless of injection strategy for CO2 foam and base cases (i.e. no surfactant). CO2 diffusion and miscibility dominated oil recovery at the core-scale resulting in high microscopic CO2 displacement. CO2 storage potential was 9.0% greater for multi-cycle SAGs compared to co-injections at MCM. A validated core-scale simulation model was used for a sensitivity analysis of grid resolution and foam quality. The model was robust in representing the observed foam behavior and will be extended to use in field scale simulations.


Author(s):  
Xue-Zhi Zhao ◽  
Guang-Zhi Liao ◽  
Ling-Yan Gong ◽  
Huo-Xin Luan ◽  
Quan-Sheng Chen ◽  
...  

2021 ◽  
Author(s):  
Xiaofei Xiong ◽  
James Jia Sheng

Abstract Sustainable development of shale reservoirs and enhanced oil recovery have become a challenge for the oil industry in recent years. Shale reservoirs are typically characterized by nano Darcy-scale matrix, natural fractures, and artificially fractures with high permeability. Some of earlier studies have confirmed that gas huff-n-puff has been investigated and demonstrated as the most effective and promising solution for improving oil recovery in tight shale reservoirs with ultra-low permeability. Fractures provide an advantage in enhancing recovery from shale reservoirs but they also pose serious problems such as severe gas channeling, which led to rapid decline production from a single well. More studies are needed to optimize the process. This paper studies the method of foam-assisted N2 huff-n-puff to enhance oil recovery in fractured shale cores. The influence of foam on oil recovery was analyzed. The effect of matrix permeability, cycle number and production time on oil recovery are also considered. The shale core used in the experiment was from Sichuan Basin, China. For the purpose of comparation and validation, two groups of tests were conducted. One group of tests was N2 huff-n-puff, and the other was foam-N2 huff-n-puff. In the optimization experiment, matrix permeabilities were set as 0.01mD, 0.008mD and 0.001mD, cycle numbers ranged from one to five, the production time is designed to be 1 hour and 24 hours respectively. During the puff period of experiments, the history of oil recovery was closely monitored to reveal the mechanism. During a round of gas injection of fractured shale cores, foam-assisted N2 huff-n-puff oil recovery is 4.59%, which is significantly higher than that of N2 huff-n-puff is only 0.0126%, and the contrast becomes more obvious with the increase of matrix permeability. The results also showed that the cumulative oil recovery increased as the number of cycles was increased, with the same experimental conditions. There is an optimal production time to achieve maximum oil recovery. The cycle numbers, matrix permeability, and production time played important roles in foam-assisted N2 huff-n-puff injection process. Therefore, under certain conditions, foam-N2 huff-n-puff has a positive effect on oil development in fractured shale.


Sign in / Sign up

Export Citation Format

Share Document