Toxicity and sublethal effects of plant essential oils on life history and detoxification enzymes activity of two-spotted spider mite (Acari: Tetranychidae)

Toxin Reviews ◽  
2021 ◽  
pp. 1-8
Author(s):  
Parvash Piramoon ◽  
Ali Mohammadzadeh ◽  
Mozhgan Mohammadzadeh ◽  
Mahdieh Behzadi ◽  
Azita Dehghan ◽  
...  
2012 ◽  
Vol 68 (7) ◽  
pp. 1069-1076 ◽  
Author(s):  
Sabrine Attia ◽  
Kaouthar L Grissa ◽  
Anne C Mailleux ◽  
Stéphanie Heuskin ◽  
Georges Lognay ◽  
...  

2019 ◽  
Vol 112 (5) ◽  
pp. 2167-2176 ◽  
Author(s):  
Torranis Ruttanaphan ◽  
Wanchai Pluempanupat ◽  
Chutikan Aungsirisawat ◽  
Polnarong Boonyarit ◽  
Gaelle Le Goff ◽  
...  

Abstract Essential oils are well known to act as biopesticides. This research evaluated the acute toxicity and synergistic effect of essential oil compounds in combination with cypermethrin against Spodoptera litura Fabricius (Lepidoptera: Noctuidae). The effects of distillation extracts of essential oils from Alpinia galanga Zingiberaceae (Zingiberales) rhizomes and Ocimum basilicum Lamiaceae (Lamiales) leaves; one of their primary essential oil compounds 1,8-cineole; and linalool were studied on second-instar S. litura by topical application under laboratory conditions. The results showed that A. galanga had the highest control efficiency, whereas1,8-cineole provided a moderate efficacy. The mixtures of linalool, 1,8-cineole, O. basilicum, or A. galanga with cypermethrin were synergistic on mortality. Activity measurements of the main detoxification enzymes show that linalool and 1,8-cineole inhibit the activity of cytochromes P450 and carboxylesterases, which could explain their synergistic effect. Based on our results, the use of these mixtures represents an ideal eco-friendly approach, helping to manage cypermethrin resistance of S. litura.


2017 ◽  
Vol 22 (1) ◽  
pp. 148 ◽  
Author(s):  
Ya Ying Li ◽  
Xiao Fan ◽  
Guo Hao Zhang ◽  
YI QING LIU ◽  
HAN QIU CHEN ◽  
...  

Traditional estimating only by measuring the lethal effect of acaricides may underestimate the total effects of acaricides on the pest mites. In order to investigate the sublethal effect of bifenazate on life history and population parameters of the two-spotted spider mite, Tetranychus urticae Koch, the newly emerged females were treated with two lethal concentrations of bifenazate: LC10 (4.92 μg/mL) and LC20 (8.77 μg/mL). Subsequently, the development and fecundity of the progeny generations were observed. Compared to the control, exposure to the 10% lethal concentrations (LC10) and LC20 of bifenazate severely affected the parental generation of T. urticae, including survival rate (reduced 9% and 13%), oviposition period (reduced 77.6% and 83.1%), fecundity per female (decreased 89.2% and 76.9%) and longevity (decreased 79.2% and 83.1%). Besides, the population parameters of the progeny generation from the treated females were also investigated. The results showed that the progeny generation had lower intrinsic rate of increase (rm) and finite rate of increase (λ), longer mean generation time (Tc) compared to the control. The results suggested that the sublethal effects of bifenazate on population growth of T. urticae were significant, and the results of this study could be used as a guide for the rational use of bifenazate in the field for better managing pest mites.


Sign in / Sign up

Export Citation Format

Share Document