Life-cycle cost of civil infrastructure with emphasis on balancing structural performance and seismic risk of road network

2011 ◽  
Vol 7 (1-2) ◽  
pp. 65-74 ◽  
Author(s):  
Hitoshi Furuta ◽  
Dan M. Frangopol ◽  
Koichiro Nakatsu
2016 ◽  
Vol 11 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Maria de Lurdes Antunes ◽  
Vânia Marecos ◽  
José Neves ◽  
João Morgado

The construction and maintenance of a road network involve the expenditure of large budgets. In order to optimize the investments in road infrastructures, designers and decision makers should have the instruments to make the most suitable decision of paving solutions for each particular situation. The life-cycle assessment is an important tool of different road pavement solutions with this purpose. This paper presents a study concerning the life-cycle cost analysis of different flexible and semi-rigid paving alternatives, with the objective to contribute for a better support in the decision process when designing new pavement structures. The analysis was carried out using data on construction costs of certain typical pavement structures and taking into consideration appropriate performance models for each type of structure being selected. The models were calibrated using results from long term performance studies across Europe and the maintenance strategies considered have taken into account the current practice also found in the European context. Besides the life-cycle administration costs, the proposed methodology also deals with user and environmental costs through its inclusion in the decision process using multi-criteria analysis. It was demonstrated that this methodology could be a simple and useful tool in order to achieve the most adequate paving solutions of a road network, in terms of construction and maintenance activities, based simultaneously on technical, economic and environmental criteria.


2018 ◽  
Vol 24 (2) ◽  
pp. 812-824 ◽  
Author(s):  
Min-Yuan CHENG ◽  
Hsi-Hsien WEI ◽  
Yu-Wei WU ◽  
Hung-Ming CHEN ◽  
Cai-Wei WU

The assessment of the seismic performance of existing school buildings is especially important in seismic-disaster mitigation planning. Utilizing a support vector machine coupled with a fast messy genetic algorithm, this study developed two inference models, both using the same input variables: i.e., 18 building characteristics selected based on expert opinion. The first model was designed to judge whether a building needs to be retrofitted; and the second, to estimate the cost of retrofitting buildings to specific levels. The study proposes a life-cycle seismic risk framework that takes into account projections of the seismic risk a given building will confront over the course of its entire existence, and thus helps determine the economically optimal level of retrofitting. The results of a case study indicate that the higher upfront cost of retrofitting that is required to reach higher seismic performance levels could, depending on the level of predicted seismic risk, be offset by lower repair costs in the long run. It is hoped that this research will serve as a basis for further studies of the assessment of the life-cycle seismic risk of school buildings, with the wider aim of arriving at an economically optimal building-retrofit policy.


Author(s):  
Bora Gencturk ◽  
Amr S. Elnashai

The life-cycle cost (LCC) of a structure in seismic regions, which includes the initial and the post-earthquake repair cost, is a critical parameter for structural engineers and other stakeholders. The LCC analysis has been gaining prominence in recent years since civil infrastructure sustainability has been identified as one of the grand challenges for engineering in the 21st century. The objective of this chapter is to first identify the components in LCC evaluation that directly affect the outcomes, and propose strategies to improve the reliability of the analysis. The shortcomings of existing studies on LCC optimization of structures are identified. These shortcomings include simplified analysis techniques to determine the structural capacity and earthquake demand, use of generalized definitions for structural limit states, and inadequacies in treating uncertainty. In the following, the problem formulation and a brief review of existing literature on LCC optimization of structures are provided. A LCC model is presented, and techniques are proposed to improve the above mentioned shortcomings. Finally, LCC analysis of an example reinforced concrete (RC) structure is employed to illustrate the methodology.


Sign in / Sign up

Export Citation Format

Share Document