scholarly journals Decision to paving solutions in road infrastructures based on life-cycle assessment

2016 ◽  
Vol 11 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Maria de Lurdes Antunes ◽  
Vânia Marecos ◽  
José Neves ◽  
João Morgado

The construction and maintenance of a road network involve the expenditure of large budgets. In order to optimize the investments in road infrastructures, designers and decision makers should have the instruments to make the most suitable decision of paving solutions for each particular situation. The life-cycle assessment is an important tool of different road pavement solutions with this purpose. This paper presents a study concerning the life-cycle cost analysis of different flexible and semi-rigid paving alternatives, with the objective to contribute for a better support in the decision process when designing new pavement structures. The analysis was carried out using data on construction costs of certain typical pavement structures and taking into consideration appropriate performance models for each type of structure being selected. The models were calibrated using results from long term performance studies across Europe and the maintenance strategies considered have taken into account the current practice also found in the European context. Besides the life-cycle administration costs, the proposed methodology also deals with user and environmental costs through its inclusion in the decision process using multi-criteria analysis. It was demonstrated that this methodology could be a simple and useful tool in order to achieve the most adequate paving solutions of a road network, in terms of construction and maintenance activities, based simultaneously on technical, economic and environmental criteria.

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Hatem Alhazmi ◽  
Syyed Adnan Raheel Shah ◽  
Muhammad Aamir Basheer

Rigid pavement structures are one of the costly components of the infrastructure development process. It consumes a huge quantity of ingredients necessary for concrete development. Hence, a newly introduced concept of circular economy in combination with waste management was introduced to solve this problem. In this study, three waste products (rice husk ash (RHA), wood sawdust (WSD), and processes waste tea (PWT)) was utilized to develop the concrete for rigid pavement structures by replacing the sand, i.e., a filler material at different percentages. During the testing procedure of compressive (CS), tensile (TS), and flexural strength (FS) properties, RHA and WSD at 5% replacement were found to be a good replacement of sand to develop required concrete. This study will help in the production of eco-friendly rigid pavement structures and a pathway of life cycle assessment in the future.


2020 ◽  
Vol 15 (5) ◽  
pp. 118-135
Author(s):  
Arturs Riekstins ◽  
Viktors Haritonovs ◽  
Verners Straupe

With limited funding and a desire to reduce environmental impact, there is a lot of pressure on road Authorities to develop decision making policy to manage better, build and maintain the road network sustainability. One of the solutions is to use various life cycle analyses. Numerous tools are available for different analyses, but they usually evaluate the construction from one perspective (economical, environmental, or social). Therefore, it was decided to develop a tool, which combines economic (Life Cycle Cost Analysis) and environmental (Life Cycle Assessment) analyses. The given study presents the methodology of the self-developed calculation program, which compare full-depth road constructions. Paper also shows shortcomings when calculation does not include all life cycle processes. In this study, five different road pavement constructions and reconstruction plans were compared. The difference between these pavements was in the layer thickness, recycled asphalt content in asphalt layers and the use of cement or fly ash in the road base layers. The results showed that the full depth reclamation technology in comparison to the full-depth removal and replacement reduce emissions by 60% and costs by 50%.


Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 215
Author(s):  
Bojana Petrović ◽  
Xingxing Zhang ◽  
Ola Eriksson ◽  
Marita Wallhagen

The objective of this paper was to explore long-term costs for a single-family house in Sweden during its entire lifetime. In order to estimate the total costs, considering construction, replacement, operation, and end-of-life costs over the long term, the life cycle cost (LCC) method was applied. Different cost solutions were analysed including various economic parameters in a sensitivity analysis. Economic parameters used in the analysis include various nominal discount rates (7%, 5%, and 3%), an inflation rate of 2%, and energy escalation rates (2–6%). The study includes two lifespans (100 and 50 years). The discounting scheme was used in the calculations. Additionally, carbon-dioxide equivalent (CO2e) emissions were considered and systematically analysed with costs. Findings show that when the discount rate is decreased from 7% to 3%, the total costs are increased significantly, by 44% for a 100-year lifespan, while for a 50 years lifespan the total costs show a minor increase by 18%. The construction costs represent a major part of total LCC, with labor costs making up half of them. Considering costs and emissions together, a full correlation was not found, while a partial relationship was investigated. Results can be useful for decision-makers in the building sector.


2016 ◽  
Vol 8 (7) ◽  
pp. 662 ◽  
Author(s):  
Aysun Özkan ◽  
Zerrin Günkaya ◽  
Gülden Tok ◽  
Levent Karacasulu ◽  
Melike Metesoy ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 7831
Author(s):  
Shaobo Liang ◽  
Hongmei Gu ◽  
Richard Bergman

Global construction industry has a huge influence on world primary energy consumption, spending, and greenhouse gas (GHGs) emissions. To better understand these factors for mass timber construction, this work quantified the life cycle environmental and economic performances of a high-rise mass timber building in U.S. Pacific Northwest region through the use of life-cycle assessment (LCA) and life-cycle cost analysis (LCCA). Using the TRACI impact category method, the cradle-to-grave LCA results showed better environmental performances for the mass timber building relative to conventional concrete building, with 3153 kg CO2-eq per m2 floor area compared to 3203 CO2-eq per m2 floor area, respectively. Over 90% of GHGs emissions occur at the operational stage with a 60-year study period. The end-of-life recycling of mass timber could provide carbon offset of 364 kg CO2-eq per m2 floor that lowers the GHG emissions of the mass timber building to a total 12% lower GHGs emissions than concrete building. The LCCA results showed that mass timber building had total life cycle cost of $3976 per m2 floor area that was 9.6% higher than concrete building, driven mainly by upfront construction costs related to the mass timber material. Uncertainty analysis of mass timber product pricing provided a pathway for builders to make mass timber buildings cost competitive. The integration of LCA and LCCA on mass timber building study can contribute more information to the decision makers such as building developers and policymakers.


Sign in / Sign up

Export Citation Format

Share Document