Automatic classification of municipal call data to support quantitative risk analysis of urban drainage systems

Author(s):  
J. A.E. ten Veldhuis ◽  
R. C. Harder ◽  
M. Loog
2011 ◽  
Vol 64 (9) ◽  
pp. 1885-1891 ◽  
Author(s):  
R. Sitzenfrei ◽  
M. Mair ◽  
M. Möderl ◽  
W. Rauch

One of the major tasks in urban water management is failure-free operation for at least most of the time. Accordingly, the reliability of the network systems in urban water management has a crucial role. The failure of a component in these systems impacts potable water distribution and urban drainage. Therefore, water distribution and urban drainage systems are categorized as critical infrastructure. Vulnerability is the degree to which a system is likely to experience harm induced by perturbation or stress. However, for risk assessment, we usually assume that events and failures are singular and independent, i.e. several simultaneous events and cascading events are unconsidered. Although failures can be causally linked, a simultaneous consideration in risk analysis is hardly considered. To close this gap, this work introduces the term cascade vulnerability for water infrastructure. Cascade vulnerability accounts for cascading and simultaneous events. Following this definition, cascade risk maps are a merger of hazard and cascade vulnerability maps. In this work cascade vulnerability maps for water distribution systems and urban drainage systems based on the ‘Achilles-Approach’ are introduced and discussed. It is shown, that neglecting cascading effects results in significant underestimation of risk scenarios.


2005 ◽  
Vol 52 (5) ◽  
pp. 257-264 ◽  
Author(s):  
T.G. Schmitt ◽  
M. Thomas ◽  
N. Ettrich

The European research project in the EUREKA framework, RisUrSim is presented with its overall objective to develop an integrated planning tool to allow cost effective management for urban drainage systems. The project consortium consisted of industrial mathematics and water engineering research institutes, municipal drainage works as well as an insurance company. The paper relates to the regulatory background of European Standard EN 752 and the need of a more detailed methodology to simulate urban flooding. The analysis of urban flooding caused by surcharged sewers in urban drainage systems leads to the necessity of a dual drainage modeling. A detailed dual drainage simulation model is described based upon hydraulic flow routing procedures for surface flow and pipe flow. Special consideration is given to the interaction between surface and sewer flow during surcharge conditions in order to most accurately compute water levels above ground as a basis for further assessments of possible damage costs. The model application is presented for a small case study in terms of data needs, model verification and first simulation results.


2018 ◽  
Vol 15 (8) ◽  
pp. 750-759 ◽  
Author(s):  
Fatemeh Jafari ◽  
S. Jamshid Mousavi ◽  
Jafar Yazdi ◽  
Joong Hoon Kim

2015 ◽  
pp. 101-107 ◽  
Author(s):  
Vianney Courdent ◽  
Luca Vezzaro ◽  
Peter Steen Mikkelsen ◽  
Ane Loft Mollerup ◽  
Morten Grum

Sign in / Sign up

Export Citation Format

Share Document