Synthesization of Edge Noises for Touch Probe and Laser Sensor Measurement

2007 ◽  
Vol 4 (1-4) ◽  
pp. 247-256 ◽  
Author(s):  
Jie Shen
Author(s):  
Sif Eddine Sadaoui ◽  
Charyar Mehdi-Souzani ◽  
Claire Lartigue

Computer-aided inspection planning (CAIP) has gained significant research attention in the last years. So far, most CAIP systems have focused on the use of a touch probe mounted on a coordinate measuring machine (CMM). This article investigates multisensor measurement aiming to perform automatic and efficient inspection plans. High-level inspection planning, which deals with sequencing of measuring operations, is the main concern of inspection planning. This paper presents an automatic approach to generate inspection sequences by combining laser sensor and touch probe, and by giving preference to the measurement using the laser sensor if quality requirements are satisfied. The proposed approach consists of three steps. In the first step, recognition of inspection data from the computer-aided design (CAD) part model is carried out based on the concept of inspection feature (IF), and the extracted information is stored in a database. In the second step, a list of privileged scanner orientations is proposed by analyzing the accessibility of both sensors. In the third step, a sequence of operations is generated iteratively. For a given scanner orientation, the ability of the laser sensor is assessed according to an original process based on fuzzy logic model. If the laser sensor does not meet the ability requirements, touch probe ability is assessed. The proposed approach is implemented and tested on a part defined by its CAD model and specifications.


Procedia CIRP ◽  
2018 ◽  
Vol 67 ◽  
pp. 398-403 ◽  
Author(s):  
Sif Eddine Sadaoui ◽  
Charyar Mehdi-Souzani ◽  
Claire Lartigue

1991 ◽  
Author(s):  
D. C. Carmer ◽  
J. L. Grooms
Keyword(s):  

2021 ◽  
Vol 71 ◽  
pp. 102136
Author(s):  
Mingyang Li ◽  
Zhijiang Du ◽  
Xiaoxing Ma ◽  
Wei Dong ◽  
Yongzhuo Gao

Author(s):  
Zhang Yingjie ◽  
Ge Liling

In this paper, we proposed a new device for geometry errors measurement and coaxiality evaluation, and the corresponding methodology for coaxiality evaluation from measurement data is presented, which allows to characterize multiple holes at a time. Unlike traditional measurement system a laser sensor is mounted onto out of the holes so that multi-hole surfaces can be “seen” by the senor when it rotates around a fixed axis. First the intersections (or ellipse profiles) of the sensor’s scanning plane and holes, are computed by fitting. Then, the center coordinates and profile points of the ellipse are computed and transformed to the 3D global coordinate frame. Finally the centerline of the hole is determined from the 3D profile points by using a weighted least-squares fitting algorithm. In addition, to reduce the effect of noises on the measurement result, error analysis and compensation techniques are studied to improve the measurement accuracy. A case study is presented to validate the measurement principle and data processing approach.


Sign in / Sign up

Export Citation Format

Share Document