two fluids
Recently Published Documents


TOTAL DOCUMENTS

679
(FIVE YEARS 114)

H-INDEX

50
(FIVE YEARS 5)

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 34
Author(s):  
Fang Yang ◽  
Wei Zhao ◽  
Cuifang Kuang ◽  
Guiren Wang

We report a quasi T-channel electrokinetics-based micromixer with electrically conductive sidewalls, where the electric field is in the transverse direction of the flow and parallel to the conductivity gradient at the interface between two fluids to be mixed. Mixing results are first compared with another widely studied micromixer configuration, where electrodes are located at the inlet and outlet of the channel with electric field parallel to bulk flow direction but orthogonal to the conductivity gradient at the interface between the two fluids to be mixed. Faster mixing is achieved in the micromixer with conductive sidewalls. Effects of Re numbers, applied AC voltage and frequency, and conductivity ratio of the two fluids to be mixed on mixing results were investigated. The results reveal that the mixing length becomes shorter with low Re number and mixing with increased voltage and decreased frequency. Higher conductivity ratio leads to stronger mixing result. It was also found that, under low conductivity ratio, compared with the case where electrodes are located at the end of the channel, the conductive sidewalls can generate fast mixing at much lower voltage, higher frequency, and lower conductivity ratio. The study of this micromixer could broaden our understanding of electrokinetic phenomena and provide new tools for sample preparation in applications such as organ-on-a-chip where fast mixing is required.


2021 ◽  
Vol 933 ◽  
Author(s):  
Ryan McGuan ◽  
R. Candler ◽  
H.P. Kavehpour

Planar partial coalescence is a phenomenon in which a droplet at a free surface or interface between two fluids coalesces into the plane surface producing a smaller droplet rather than coalescing completely. This smaller, ‘daughter’ droplet will be driven towards the interface by gravity and capillary forces resulting in a cascade effect of progressively small daughter droplets until the Ohnesorge Number approaches $\sim$ 1 and the cascade terminates with a full coalescence event. This paper utilizes a room temperature liquid metal alloy composed of gallium, indium and tin to study partial coalescence in a viscous quiescent medium and observed bouncing of the coalescing droplets on the interface. We observed the event using high speed videography measuring effects such as the droplet to daughter droplet ratio, droplet velocities, droplet bounce heights and coefficients of restitution for the bouncing event. An existing model (Honey & Kavehpour, Phys. Rev. E, vol. 73, 2006) from our group was used, validated and expanded upon to include buoyancy effects to estimate the initial velocity of the droplet and we developed two new models for the droplet travel and maximum bounce height. The first utilizes the Stokes model for drag to moderate success while the second utilizes a model from Beard & Pruppacher (J. Atmos. Sci., vol. 26, 1969, pp. 1066–1072) and a fourth-order Runge–Kutta numerical integration scheme to predict the droplet velocity and position as functions of time. Additionally the coefficient of restitution was determined from the model using a shooting method technique in tandem with measured data to find a coefficient of restitution value of $A = 0.27 \pm 0.06$ . This ‘bouncing drop’ phenomenon continues in a quiescent viscous fluid to the sub-micron scale and was facilitated by the material properties of the liquid metal including the high density, moderate viscosity and particularly high interfacial tension.


Author(s):  
Björn Gebhard ◽  
József J. Kolumbán

AbstractWe consider the evolution of two incompressible fluids with homogeneous densities $$\rho _{-}<\rho _+$$ ρ - < ρ + subject to gravity described by the inviscid Boussinesq equations and provide the explicit relaxation of the associated differential inclusion. The existence of a subsolution to the relaxation allows one to conclude the existence of turbulently mixing solutions to the original Boussinesq system. As a specific application we investigate subsolutions emanating from the classical Rayleigh-Taylor initial configuration where the two fluids are separated by a horizontal interface with the heavier fluid being on top of the lighter. It turns out that among all self-similar subsolutions the criterion of maximal initial energy dissipation selects a linear density profile and a quadratic growth of the mixing zone. The subsolution selected this way can be extended in an admissible way to exist for all times. We provide two possible extensions with different long-time limits. The first one corresponds to a total mixture of the two fluids, the second corresponds to a full separation with the lighter fluid on top of the heavier. There is no motion in either of the limit states.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Darío M. Escala ◽  
Alberto P. Muñuzuri

AbstractFluid instabilities have been the subject of study for a long time. Despite all the extensive knowledge, they still constitute a serious challenge for many industrial applications. Here, we experimentally consider an interface between two fluids with different viscosities and analyze their relative displacement. We designed the contents of each fluid in such a way that a chemical reaction takes place at the interface and use this reaction to suppress or induce a fingering instability at will. This process describes a road map to control viscous fingering instabilities in more complex systems via interfacial chemical reactions.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 417
Author(s):  
Andrea Lucchini ◽  
Igor M. Carraretto ◽  
Thanh N. Phan ◽  
Paola G. Pittoni ◽  
Luigi P. M. Colombo

Environmental concerns are forcing the replacement of commonly used refrigerants, and finding new fluids is a top priority. Soon the R134a will be banned, and the hydro-fluoro-olefin (HFO) R1234ze(E) has been indicated as an alternative due to its smaller global warming potential (GWP) and shorter atmospheric lifetime. Nevertheless, for an optimal replacement, its thermo-fluid-dynamic characteristics have to be assessed. Flow boiling experiments (saturation temperature Tsat = 5 °C, mass flux G = 65 ÷ 222 kg·m−2·s−1, mean quality xm = 0.15 ÷ 0.95, quality changes ∆x = 0.06 ÷ 0.6) inside a microfin tube were performed to compare the pressure drop per unit length and the heat transfer coefficient provided by the two fluids. The results were benchmarked for some correlations. In commonly adopted operating conditions, the two fluids show a very similar behavior, while benchmark showed that some correlations are available to properly predict the pressure drop for both fluids. However, only one is satisfactory for the heat transfer coefficient. In conclusion, R1234ze(E) proved to be a suitable drop-in replacement for the R134a, whereas further efforts are recommended to refine and adapt the available predictive models.


Author(s):  
Marta Sośnicka ◽  
Stefan de Graaf ◽  
Giulio Morteani ◽  
David A. Banks ◽  
Samuel Niedermann ◽  
...  

AbstractStibnite was mined until the end of the twentieth century in the Schlaining ore district, Austria, near the easternmost border of the Eastern Alps where windows of Penninic ophiolites and metasediments are exposed below Austroalpine tectonic units. In Early Miocene, structurally controlled small vein and metasomatic stibnite-quartz deposits were formed in Penninic Mesozoic calcareous marbles and calcite schists. Fluid inclusion studies identified two fluids involved in the mineralization: (i) a low-salinity, low-CO2 metamorphic fluid that precipitated quartz at approximately 240 °C and (ii) a stibnite-forming ore fluid that had a meteoric origin. There is no evidence of boiling or that the fluids mixed during mineralization. The ore components Sb and H2S were leached by fluid/rock interaction from buried rock units. Stibnite mineralization occurred by cooling the ore fluid to below 300 °C, at less than 2000 m depth. Quartz precipitated at slightly lower temperatures, approximately contemporaneous with stibnite. Fluid migration and ore deposition are probably related to high heat flow during the exhumation of the Rechnitz Window in response to Neogene extension and/or shallow Early Miocene andesitic magmatism. The study emphasizes that data obtained from the analyses of gangue minerals alone cannot routinely be used to infer the origin and depositional conditions of the associated ore minerals.


2021 ◽  
Vol 26 (4) ◽  
pp. 582-590
Author(s):  
Imre Ferenc Barna ◽  
László Mátyás

We investigate a one dimensional flow described with the non-compressible coupled Euler and non-compressible Navier-Stokes equations in the Cartesian coordinate system. We couple the two fluids through the continuity equation where different void fractions can be considered. The well-known self-similar Ansatz was applied and analytic solutions were derived for both velocity and pressure field as well.


2021 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Karolina Weremijewicz ◽  
Andrzej Gajewski

Refrigeration and air conditioning consume 15% of the total generated electricity. Vapor condensation devices need a heat sink which may come in the form of absorption cycles devices. Two fluids, which change phase and concentration, flow through these devices. These changes take place amid a two-phase flow in contact with a solid phase. Hence, an extended study of the velocity profiles across the thin liquid layer is necessary, which is assumed to be conducted by a laser Doppler anemometer. The preliminary studies concerning the calibration of this anemometer are reported.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6432
Author(s):  
Hamid Ait Abderrahmane ◽  
Shahid Rabbani ◽  
Mohamed Sassi

We present a numerical study of viscous fingering occurring during the displacement of a high viscosity fluid by low viscosity fluid in a circular Hele-Shaw cell. This study assumes that the fluids are miscible and considers the effects of inertial forces on fingering morphology, mixing, and displacement efficiency. This study shows that inertia has stabilizing effects on the fingering instability and improves the displacement efficiency at a high log-mobility-viscosity ratio between displacing and displaced fluids. Under certain conditions, inertia slightly reduces the finger-split phenomenon and the mixing between the two fluids.


2021 ◽  
Author(s):  
Abdullah Abu-Eida ◽  
Salem Al-Sabea ◽  
Milan Patra ◽  
Bader Akbar ◽  
Kutbuddin Bhatia ◽  
...  

Abstract The Minagish field in West Kuwait is a high potential field which poses several challenges in terms of hydrocarbon flow assurance through highly depleted tight carbonate intervals with uneven reservoir quality and curtailed mobility. These conditions have shifted the field development from vertical to horizontal wellbore completions. Achieving complete wellbore coverage is a challenge for any frac treatment performed in a long openhole lateral with disparities in reservoir characteristics. The fluid will flow into the path of least resistance leaving large portions of the formation untreated. As a result, economic fracturing treatment options dwindle significantly, thus reservoir stimulation results are not always optimum. A multistage fracturing technique using Integrated Dynamic Diversion (IDD) has been performed first time in West Kuwait field well. The process uses active fluid energy to divert flow into a specific fracture point in the lateral, which can initiate and precisely place a fracture. The process uses two self-directed fluid streams: one inside the pipe and one in the annulus. The process mixes the two fluids downhole with high energy to form a consistent controllable mixture. The technique includes pinpoint fluid jetting at the point of interest, followed by in-situ HCL based crosslinked systems employed for improving individual stage targets. The IDD diversion shifts the fracture to unstimulated areas to create complex fractures which increases reservoir contact volume and improved overall conductivity in the lateral. The kinetic and chemical diversion of the IDD methodology is highly critical to control fluid loss in depleted intervals and results in enhanced stimulation. Pumping a frac treatment in openhole without control would tend to initiate a longitudinal fracture along the wellbore and may restrict productivity. By using specialized completion tools with nozzles at the end of the treating string, a new pinpoint process has been employed to initiate a transverse fracture plane in IDD applications. Proper candidate selection and fluid combination with in-situ crosslink acid effectively plug the fracture generated previously and generate pressure high enough to initiate another fracture for further ramification. By combining these processes into one continuous operation, the use of wireline/coiled tubing for jetting, plug setting and milling is eliminated, making the new multistage completion technology economical for these depleted wells. The application of the IDD methodology is a fit-for-purpose solution to address the unique challenges of openhole operations, formation technical difficulties, high-stakes economics, and untapped high potential from intermittent reservoirs. The paper will present post-operation results of this completion from all fractured zones along the lateral and will describe the lessons learned in implementation of this methodology which can be considered as best practice for application in similar challenges in other fields.


Sign in / Sign up

Export Citation Format

Share Document