Chemo-poroelastic analysis of pore pressure and stress distribution around a wellbore in swelling shale: effect of undrained response and horizontal permeability anisotropy

2012 ◽  
Vol 7 (3) ◽  
pp. 209-218 ◽  
Author(s):  
Hamid Roshan ◽  
Mohammad A. Aghighi
2000 ◽  
Vol 3 (05) ◽  
pp. 394-400 ◽  
Author(s):  
M. Khan ◽  
L.W. Teufel

Summary Reservoir stress path is defined as the ratio of change in effective horizontal stress to the change in effective vertical stress from initial reservoir conditions during pore-pressure drawdown. Measured stress paths of carbonate and sandstone reservoirs are always less than the total stress boundary condition (isotropic loading) and are either greater or less than the stress path predicted by the uniaxial strain boundary condition. Clearly, these two boundary-condition models that are commonly used by the petroleum industry to calculate changes in effective stresses in a reservoir and to measure reservoir properties in the laboratory are inaccurate and can be misleading if applied to reservoir management problems. A geomechanical model that incorporates geologic and geomechanical parameters was developed to more accurately predict the reservoir stress path. Numerical results show that reservoir stress path is dependent on the size and geometry of the reservoir and on elastic properties of the reservoir rock and bounding formations. In general, stress paths become lower as the aspect ratio of reservoir length to thickness increases. Lenticular sandstone reservoirs have a higher stress path than blanket sandstone reservoirs that are continuous across a basin. This effect is enhanced when the bounding formations have a lower elastic modulus than the reservoir and when the reservoir is transversely isotropic. In addition, laboratory experiments simulating reservoir depletion for different stress path conditions demonstrate that stress-induced permeability anisotropy evolves during pore-pressure drawdown. The maximum permeability direction is parallel to the maximum principal stress and the magnitude of permeability anisotropy increases at lower stress paths. Introduction Matrix permeability and pore volume compressibility are fundamentally important characteristics of hydrocarbon reservoirs because they provide measures of reservoir volume and reservoir producibility. Laboratory studies have shown that these properties are stress sensitive and are usually measured under hydrostatic (isotropic) loads that do not truly reflect the anisotropic stress state that exists in most reservoirs and do not adequately simulate the evolution of deviatoric stresses in a reservoir as the reservoir is produced. Recent laboratory studies1–3 have shown that permeability and compressibility are dependent on the deviatoric stress and change significantly with reservoir stress path. In-situ stress measurements in carbonate and clastic reservoirs indicate that the reservoir stress path is not isotropic loading (equal to 1.0) and can range from 0.14 to 0.76. 4 The measured reservoir stress paths are also inconsistent with the elastic uniaxial strain model5 commonly used to calculate horizontal stress and changes in horizontal stress with pore-pressure drawdown. The calculated uniaxial strain stress path can be significantly less or greater than the measured stress path.4 Knowledge of the stress path that reservoir rock will follow during production and how this stress path will affect reservoir properties is critical for reservoir management decisions necessary to increase reservoir producibility. However, in-situ stress measurements needed to determine reservoir stress path are difficult and expensive to conduct, and may take several years to collect. Various analytical models have been proposed to calculate in-situ horizontal stresses and they could be applied to the prediction of reservoir stress path during pore-pressure drawdown.5–9 However, none of these models addresses all of the essential geological and geomechanical factors that influence reservoir stress path, such as reservoir size and geometry or the coupled mechanical interaction between the reservoir and the bounding formations. Accordingly, a geomechanical model was developed to more accurately predict reservoir stress path. The model incorporates essential geological and geomechanical factors that may control reservoir stress path during production. In addition, laboratory results showing the effect of reservoir stress path on permeability and permeability anisotropy in a low-permeability sandstone are also presented. These experiments clearly demonstrate that during pore-pressure drawdown permeability decreases and that permeability parallel and perpendicular to the maximum stress direction decreases at different rates. The smallest reduction in permeability is parallel to the maximum principal stress. Consequently, stress-induced permeability anisotropy evolves with pore-pressure drawdown and the magnitude of permeability anisotropy increases at lower stress paths. Field Measurements of Stress Path in Lenticular Sandstone Reservoirs Salz10 presented hydraulic fracture stress data and pore-pressure measurements from reservoir pressure build-up tests in low-permeability, lenticular, gas sandstones of the Vicksburg formation in the McAllen Ranch field, Texas (Table 1). This work was one of the first studies to clearly show that the total minimum horizontal stress is dependent on the pore pressure. Hydraulic fractures were completed in underpressured and overpressured sandstone intervals from approximately 3100 to 3800 m. Some of the sandstones (9A, 10A, 11A, 12A, 13A, and 14A) were later hydraulically fractured a second time to improve oil productivity after several years of production. For initial reservoir conditions before production, the total minimum horizontal stress shows a decrease with decreasing pore pressure for different sandstone reservoirs. The effective stress can also be determined from these data. Following Rice and Cleary11 effective stress is defined by σ = S − α P , ( 1 ) where ? is the effective stress, S is the total stress, ? is a poroelastic parameter, and P is the pore pressure. For this study ? is assumed to equal unity. A linear regression analysis of the minimum horizontal and vertical effective stress data shows that at initial reservoir conditions the ratio of change in minimum effective horizontal stress to the change in effective vertical stress with increasing depth and pore pressure is 0.50.


1961 ◽  
Vol 1 (03) ◽  
pp. 177-183
Author(s):  
J.B. Cheatham ◽  
J.C. Wilhoit

Abstract Although an oil well is a long cylindrical hole with an irregular bottom, it appears likely that the nature of the stress concentration at the bottom of the hole can be ascertained from an analysis of the stresses around a short cylindrical cavity with rounded corners and smooth bottom. Such a cavity is studied primarily because it leads more readily to a solution to the problem by the use of stress functions in this paper the stress distribution around a short cylindrical cavity subjected to bit loading, overburden and drilling fluid pressures is determined by means of an analytical solution which approximately satisfies the boundary conditions of the problem. From this solution the stresses at the corner of the hole are calculated to be about 35 per cent lower than comparable results obtained by photoelastic and relaxation analyses. This difference is apparently due to the large radius of curvature at the corner of the cavity in the present analysis. Since good agreement is obtained between the results of this analysis and the stresses calculated for a similar loading on a semi-infinite elastic solid, it is concluded that the bit action in the region near the center of the hole is not appreciably affected by the presence of the sides of the hole. Introduction Much has been written concerning drilling "under down-hole conditions" and pertaining to the stress distribution in the rock at the bottom of an oil well. For example, it is known that identical rocks can be drilled more rapidly at the surface than under subsurface conditions of pressure and stress. Information on the behavior of rocks under loading can be obtained from triaxial test data. From such tests it is found that rocks exhibit brittle failure when the confining pressure and pore pressure are equal, but the mode of failure may change to ductile as the difference between the confining pressure and the pore pressure is increased. Brittle failure implies that there is very little permanent deformation before fracture, whereas ductile failure indicates that permanent deformation takes place before fracture. Some rocks are ductile at differential pressures of 5,000 psi, but other rocks are brittle even at differential pressures of more than 50,000 psi.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. EN1-EN15
Author(s):  
Rongqiang Chen ◽  
Xu Xue ◽  
Jaeyoung Park ◽  
Akhil Datta-Gupta ◽  
Michael J. King

We have performed a site-specific study of the mechanics of induced seismicity in the Azle area, North Texas, using a coupled 3D fluid flow and poroelastic simulation model, extending from the overburden into the crystalline basement. The distinguishing feature of our study is that we account for the combined impact of water disposal injection and gas and water production on the pore pressure and stress distribution in this area. The model is calibrated using observed injection wellhead pressures and the location, timing, and magnitude of seismic events. We used a stochastic multiobjective optimization approach to obtain estimated ranges of fluid flow and poroelastic parameters, calibrated to the pressure, rate, and seismic event data. Mechanisms for induced seismicity were examined using these calibrated models. The calibrated models indicate no fluid movement or pressure increase in the crystalline basement, although there is plastic strain accumulation for the weaker elements along the fault in the basement. The accumulation of strain change appears to be caused by the unbalanced loading on different sides of the fault due to the differential in fluid injection and production. Previous studies ignored the produced gas volume, which is almost an order of magnitude larger than the produced water volume under reservoir conditions and which significantly impacts the pore pressure in the sedimentary formations and the stress distribution in the basement. A quantitative analysis indicates that the poroelastic stress changes dominate in the basement with no noticeable change in pore pressure. Even though the low-permeability faults in the basement are not in pressure communication with the Ellenburger formation, the poroelastic stresses transmitted to the basement can trigger seismicity without elevated pore pressure.


Sign in / Sign up

Export Citation Format

Share Document