brittle failure
Recently Published Documents


TOTAL DOCUMENTS

580
(FIVE YEARS 97)

H-INDEX

38
(FIVE YEARS 5)

2021 ◽  
Author(s):  
James Lever ◽  
Austin Lines ◽  
Susan Taylor ◽  
Garrett Hoch ◽  
Emily Asenath-Smith ◽  
...  

The mechanics underlying ice–skate friction remain uncertain despite over a century of study. In the 1930s, the theory of self-lubrication from frictional heat supplanted an earlier hypothesis that pressure melting governed skate friction. More recently, researchers have suggested that a layer of abraded wear particles or the presence of quasi-liquid molecular layers on the surface of ice could account for its slipperiness. Here, we assess the dominant hypotheses proposed to govern ice– skate friction and describe experiments conducted in an indoor skating rink aimed to provide observations to test these hypotheses. Our results indicate that the brittle failure of ice under rapid compression plays a strong role. Our observations did not confirm the presence of full contact water films and are more consistent with the presence of lubricating ice-rich slurries at discontinuous high-pressure zones (HPZs). The presence of ice-rich slurries supporting skates through HPZs merges pressure-melting, abrasion and lubricating films as a unified hypothesis for why skates are so slippery across broad ranges of speeds, temperatures and normal loads. We suggest tribometer experiments to overcome the difficulties of investigating these processes during actual skating trials.


2021 ◽  
Author(s):  
Mohammad Rasheed Khan ◽  
Guenther Glatz ◽  
Devon Chikonga Gwaba ◽  
Gallyam Aidagulov

Abstract More than two decades have passed since the introduction of the scratch testing method for rock strength determination. The test method typically involves dragging a rigid-shaped cutter across the rock surface at a fixed cutting depth. This depth determines the failure mechanism of the rock, ductile for shallow depths and brittle for deeper. In the ductile mode, intrinsic specific energy is primarily a measure of the unconfined-compressive-strength (UCS), which is pivotal for rate of penetration (ROP) during drilling and for borehole stability analysis. On the contrary, brittle failure can lead to permanent core damage and is usually not desired as it impacts interpretation of the scratch testing results. Consequently, it is imperative to identify the critical depth, and at which transition from ductile to brittle failure occurs which will help optimize rock testing and tool designs. In this study, a novel methodology is proposed utilizing micro-computed tomography (CT) imaging to determine critical depth through morphological analysis of scratch test cuttings. Scratch tests are carried out on Indiana limestone core samples with the cutter-rock interaction geometry characterized by a cutter width of 10mm and a back-rake angle of 15°. The sample is scratched in the range of 0.05mm to 0.40mm with increments of 0.05mm. Scratch powder is carefully collected after each scratch increment and stored for further analysis. This powder is then loaded into slim rubber tubes and imaged at a high resolution of 1 µm with a helical micro-CT scanner. The scans are then reconstructed using a computer program to initiate the visualization of individual grains from each cutter depth including evaluation of grain morphologies. Finally, the results from this morphological analysis are corroborated and compared with three other methods: force response analysis, force inflection point analysis, and the size effect law (SEL). Based on shape analysis, it was found that the transition from ductile to brittle regime occurs at a depth of 0.25mm. Elongation and appearance of the enhanced degree of angularity of the grains as the depth of cut (DOC) increases past 0.25mm was observed. Moreover, large grain sizes were detected and are representative of formation of chips (typical brittle regime response). Furthermore, it is illustrated that the image analysis helps eliminate the ambiguity of force signal analysis and in combination can aid in the critical depth of cut determination. The other methods involving force alone and the SEL are not able to pin-point onset of brittle regime. Using a similar methodology, creation of a database for various rock types is recommended to develop a guide for the depth of cut selection during scratch testing. This novel methodology utilizing micro-CT analysis and comparative study with other techniques will put in place an accurate strategy to determine the critical depth of cut when designing rock scratch testing programs.


2021 ◽  
Author(s):  
Kai Xu ◽  
Zhiqiang Wu ◽  
Zhihuan Wang ◽  
Jie Ren ◽  
Shuaiheng Li

The wet slime tailing pond formed during the production of accumulated bauxite is a source of artificial debris flow hazard with high potential energy. In order to explore the effectiveness of solidification technology in processing bauxite slime, experimental study was conducted on the strength characteristics of cement-solidified slime with bauxite slime as the test object, so as to investigate the impact of cement contents and curing ages on the compressive strength of cement-solidified slime. According to the test results, the strength and deformation characteristics of solidified slime are related to the cement content, and the higher the cement admixed amount, the greater the compressive strength of solidified slime; the cement-solidified slime samples are subject to brittle failure, and with the increase of strain, the stress first rises to its peak and then decreases rapidly. The findings may serve as reference in processing bauxite slime.


Author(s):  
Neelima Kandula ◽  
Jessica McBeck ◽  
Benoît Cordonnier ◽  
Jérôme Weiss ◽  
Dag Kristian Dysthe ◽  
...  

AbstractUnderstanding the mechanisms of strain localization leading to brittle failure in reservoir rocks can shed light on geomechanical processes such as porosity and permeability evolution during rock deformation, induced seismicity, fracturing, and subsidence in geological reservoirs. We perform triaxial compression tests on three types of porous reservoir rocks to reveal the local deformation mechanisms that control system-size failure. We deformed cylindrical samples of Adamswiller sandstone (23% porosity), Bentheim sandstone (23% porosity), and Anstrude limestone (20% porosity), using an X-ray transparent triaxial deformation apparatus. This apparatus enables the acquisition of three-dimensional synchrotron X-ray images, under in situ stress conditions. Analysis of the tomograms provide 3D distributions of the microfractures and dilatant pores from which we calculated the evolving macroporosity. Digital volume correlation analysis reveals the dominant strain localization mechanisms by providing the incremental strain components of pairs of tomograms. In the three rock types, damage localized as a single shear band or by the formation of conjugate bands at failure. The porosity evolution closely matches the evolution of the incremental strain components of dilation, contraction, and shear. With increasing confinement, the dominant strain in the sandstones shifts from dilative strain (Bentheim sandstone) to contractive strain (Adamswiller sandstone). Our study also links the formation of compactive shear bands with porosity variations in Anstrude limestone, which is characterized by a complex pore geometry. Scanning electron microscopy images indicate that the microscale mechanisms guiding strain localization are pore collapse and grain crushing in sandstones, and pore collapse, pore-emanated fractures and cataclasis in limestones. Our dynamic X-ray microtomography data brings unique insights on the correlation between the evolutions of rock microstructure, porosity evolution, and macroscopic strain during the approach to brittle failure in reservoir rocks.


2021 ◽  
Vol 45 (5) ◽  
pp. 393-397
Author(s):  
Xiaohua Jin ◽  
Jiyu Zheng

Loading rate is an important impactor of the mechanical properties, as well as the deformation and failure mode of coal and rock. Using an RMT-301 rock mechanics tester and a Soft Island acoustic emitter, uniaxial compression and acoustic emission (AE) tests were carried out on coal samples under different loading rates. The results show that uniaxial compressive stress-strain curves of the rock samples each consist of four segments: compaction, elasticity, yield, and failure. As the loading rate increased from 0.01mm/s to 0.02mm/s, the peak strength rose, the post-peak deformability dropped, the brittle failure features of anthracite became more obvious, more AE events took place, and AE frequency increased. Energy analysis shows that, the faster the loading rate, the larger the AE count, the faster the energy accumulation, but the fewer the total energy accumulation.


Author(s):  
Xianwei Dai ◽  
Zhongwei Huang ◽  
Huaizhong Shi ◽  
Xiaoguang Wu ◽  
Chao Xiong

2021 ◽  
pp. 1-20
Author(s):  
James H. Lever ◽  
Austin P. Lines ◽  
Susan Taylor ◽  
Garrett R. Hoch ◽  
Emily Asenath-Smith ◽  
...  

Abstract The mechanics underlying ice–skate friction remain uncertain despite over a century of study. In the 1930s, the theory of self-lubrication from frictional heat supplanted an earlier hypothesis that pressure melting governed skate friction. More recently, researchers have suggested that a layer of abraded wear particles or the presence of quasi-liquid molecular layers on the surface of ice could account for its slipperiness. Here, we assess the dominant hypotheses proposed to govern ice–skate friction and describe experiments conducted in an indoor skating rink aimed to provide observations to test these hypotheses. Our results indicate that the brittle failure of ice under rapid compression plays a strong role. Our observations did not confirm the presence of full-contact water films and are more consistent with the presence of lubricating ice-rich slurries at discontinuous high-pressure zones (HPZs). The presence of ice-rich slurries supporting skates through HPZs merges pressure-melting, abrasion and lubricating films as a unified hypothesis for why skates are so slippery across broad ranges of speeds, temperatures and normal loads. We suggest tribometer experiments to overcome the difficulties of investigating these processes during actual skating trials.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yong Fan ◽  
Xianze Cui ◽  
Zhendong Leng ◽  
Junwei Zheng ◽  
Feng Wang ◽  
...  

As a man-made engineering hazard, it is widely accepted that the rockbursts are the result of energy release. Previous studies have examined the unloading of in-situ stress resulting from deep tunnel excavation as a quasi-static process but the transient stress variation during excavation has received less attention. This research discusses rockbursts that happened during the construction of a diversion tunnel at Jinping II hydropower station. The brittle-ductile-plastic (BDP) transition property of Jinping marble was numerically described by the Hoek-Brown strength criterion, and the dynamic energy release process derived from the transient unloading of in-situ stress was studied using an index, local energy release rate. Studies have shown that, due to transient unloading, the strain energy of the surrounding rock mass goes through a dynamic process of decreasing at first, increasing second, then reducing before finally stabilizing. The first decrease of strain energy results from elastic unloading waves and does not cause brittle failure in rock masses, which is consistent with the elastic condition but the secondary reduction of strain energy is because the accumulated strain energy in rock masses exceeds the storage limit, which will inevitably trigger the brittle failure in the rock mass. Thus, the shorter the distance to the tunnel wall the bigger and more intense the energy release. Finally, a relationship between the average value of the local energy release rate and the rockburst intensity was established to assess the risk of rockburst induced by the blasting excavation of a deep tunnel.


Sign in / Sign up

Export Citation Format

Share Document