Studies on the effect of heterogeneous catalysts on the hydrothermal liquefaction of sugarcane bagasse to low-oxygen-containing bio-oil

Biofuels ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Gopalakrishnan Govindasamy ◽  
Rohit Sharma ◽  
Sunu Subramanian
Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122793
Author(s):  
Javier A. Jimenez Forero ◽  
Tuyen H.T. Tran ◽  
Tana Tana ◽  
Adrian Baker ◽  
Jorge Beltramini ◽  
...  

2019 ◽  
Vol 15 (1) ◽  
pp. 186-198
Author(s):  
Gopalakrishnan Govindasamy ◽  
Rohit Sharma ◽  
Sunu Subramanian

Development of catalyst with high deoxygenation activity and optimum process parameters are the key for getting the highest biooil yield with the least oxygen content by hydrothermal liquefaction. With this view, iron-cobalt oxides of Co/Fe ratio 0.33, 1.09, 2.35, and 3.52 were prepared by co-precipitation method, and characterized by XRD, BET surface area, chemical composition by EDX method, and evaluated for hydrothermal liquefaction of sugarcane bagasse in a high-pressure batch reactor under subcritical conditions using CO as process gas to find the optimum Co/Fe ratio and process parameters. Optimum Co/Fe ratio was found to be 1.09 as it gave the highest bio-oil yield of 57.6% with the least oxygen content of 10.8%, attributed to the cobalt ferrite, the major phase present in it. The optimum temperature, initial CO pressure, water/biomass ratio, catalyst/biomass ratio and reaction time for the highest oil yield with the least oxygen content were found to be 250 °C, 45 bar, 28, 0.4, and 120 min,  respectively. From the effect of reaction time, it was found that much of the hydrolysis of lignocellulose to water soluble oxygenates, its deoxygenation to bio-oil and its deoxygenation to low oxygen containing bio-oil took place in initial 15 min, 15 to 60 min, and from 30 to 120 min, respectively. Total oil yield (%) was lower by 21% and % oxygen in total oil was higher by 9.9% for spent catalyst compared to fresh catalyst indicating the erosion in the deoxygenation activity of catalyst and thus need for improving its hydrothermal stability. Copyright © 2020 BCREC Group. All rights reserved


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 849
Author(s):  
Chen Hong ◽  
Zhiqiang Wang ◽  
Yanxiao Si ◽  
Yi Xing ◽  
Jian Yang ◽  
...  

In this study, penicillin residue (PR) was used to prepare bio-oil by hydrothermal liquefaction. The effects of homogeneous (organic acid and alkaline catalysts) and heterogeneous catalysts (zeolite molecular sieve) on the yield and properties of bio-oil were investigated. The results show that there are significant differences in the catalytic performance of the catalysts. The effect of homogeneous catalysts on the bio-oil yield was not significant, which only increased from 26.09 (no catalysts) to 31.44 wt.% (Na2CO3, 8 wt.%). In contrast, heterogeneous catalysts had a more obvious effect, and the oil yield reached 36.44 wt.% after adding 5 wt.% MCM-48. Increasing the amount of catalyst enhanced the yield of bio-oil, but excessive amounts of catalyst led to a secondary cracking reaction, resulting in a reduction in bio-oil. Catalytic hydrothermal liquefaction reduced the contents of heteroatoms (oxygen, mainly), slightly increased the contents of C and H in the bio-oil and increased the higher heating value (HHV) and energy recovery (ER) of bio-oil. FTIR and GC-MS analyses showed that the addition of catalysts was beneficial in increasing hydrocarbons and oxygen-containing hydrocarbons in bio-oil and reducing the proportion of nitrogen-containing substances. Comprehensive analyses of the distribution of aromatic, nitrogen-containing and oxygen-containing components in bio-oil were also performed. This work is beneficial for further research on the preparation of bio-oil by hydrothermal liquefaction of antibiotic fermentation residue.


2017 ◽  
Vol 293-294 ◽  
pp. 159-166 ◽  
Author(s):  
Junjie Bian ◽  
Qi Zhang ◽  
Peng Zhang ◽  
Lijuan Feng ◽  
Chunhu Li

Fuel ◽  
2021 ◽  
Vol 297 ◽  
pp. 120695
Author(s):  
Jiahui Han ◽  
Xing Li ◽  
Shengyan Kong ◽  
Guang Xian ◽  
Hualong Li ◽  
...  

Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121236
Author(s):  
Alejandra M. Miranda ◽  
Alex A. Sáez ◽  
Brenda S. Hoyos ◽  
Deiver A. Gómez ◽  
Gabriel J. Vargas

Sign in / Sign up

Export Citation Format

Share Document