nannochloropsis salina
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 25)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 329 ◽  
pp. 124872
Author(s):  
J. Vinoth Arul Raj ◽  
R. Praveen Kumar ◽  
B. Vijayakumar ◽  
Edgard Gnansounou ◽  
B. Bharathiraja

2021 ◽  
Vol 54 ◽  
pp. 102218
Author(s):  
Seungjib Jeon ◽  
Hyun Gi Koh ◽  
Jun Muk Cho ◽  
Nam Kyu Kang ◽  
Yong Keun Chang

2020 ◽  
Vol 8 (8) ◽  
pp. 1195
Author(s):  
Seok Won Jeong ◽  
Kwon HwangBo ◽  
Jong Min Lim ◽  
Seung Won Nam ◽  
Bong Soo Lee ◽  
...  

In microalgae, photosynthesis provides energy and sugar phosphates for the biosynthesis of storage and structural carbohydrates, lipids, and nitrogenous proteins. The oleaginous alga Nannochloropsis salina does not preferentially partition photoassimilates among cellulose, chrysolaminarin, and lipids in response to nitrogenous nutrient deprivation. In the present study, we investigated whether genetic impairment of the cellulose synthase gene (CesA) expression would lead to protein accumulation without the accumulation of storage C polymers in N. salina. Three cesA mutants were generated by the CRISPR/Cas9 approach. Cell wall thickness and cellulose content were reduced in the cesA1 mutant, but not in cesA2 or cesA4 cells. CesA1 mutation resulted in a reduction of chrysolaminarin and neutral lipid contents, by 66.3% and 37.1%, respectively, but increased the soluble protein content by 1.8-fold. Further, N. salina cells with a thinned cell wall were susceptible to mechanical stress, resulting in a 1.7-fold enhancement of lipid extractability. Taken together, the previous and current studies strongly suggest the presence of a controlling mechanism that regulates photoassimilate partitioning toward C and N metabolic pathways as well as the cellulose metabolism as a potential target for cost-effective microalgal cell disruption and as a useful protein production platform.


2020 ◽  
Vol 117 (11) ◽  
pp. 3299-3309
Author(s):  
Nature Poddar ◽  
Sheik N. Elahee Doomun ◽  
Damien L. Callahan ◽  
Greg M. Kowalski ◽  
Gregory J. O. Martin

Sign in / Sign up

Export Citation Format

Share Document