secondary cracking
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 0)

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1776
Author(s):  
Pavlo Maruschak ◽  
Roman Vorobel ◽  
Oleksandra Student ◽  
Iryna Ivasenko ◽  
Halyna Krechkovska ◽  
...  

The micro- and macroscopic fatigue crack growth (FCG) rates of a wide class of structural materials were analyzed and it was concluded that both rates coincide either during high-temperature tests or at high stress intensity factor (SIF) values. Their coincidence requires a high level of cyclic deformation of the metal along the entire crack front as a necessary condition for the formation of fatigue striations (FS). Based on the analysis of digital fractographic images of the fatigue fracture surfaces, a method for the quantitative assessment of the spacing of FS has been developed. The method includes the detection of FS by binarization of the image based on the principle of local minima, rotation of the highlighted fragments of the image using the Hough transform, and the calculation of the distances between continuous lines. The method was tested on 34KhN3M steel in the initial state and after long-term operation (~3 × 105 h) in the rotor disk of a steam turbine at a thermal power plant (TPP). Good agreement was confirmed between FCG rates (both macro and microscopic, determined manually or using digital imaging techniques) at high SIF ranges and their noticeable discrepancy at low SIF ranges. Possible reasons for the discrepancy between the micro- and macroscopic FCG rates at low values of the SIF are analyzed. It has also been noted that FS is easier to detect on the fracture surface of degraded steel. Hydrogen embrittlement of steel during operation promotes secondary cracking along the FS, making them easier to detect and quantify. It is shown that the invariable value of the microscopic FCG rate at a low SIF range in the operated steel is lower than observable for the steel in the initial state. Secondary cracking of the operated steel may have contributed to the formation of a typical FS pattern along the entire crack front at a lower FCG rate than in unoperated steel.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5403
Author(s):  
Zoran Čepić ◽  
Višnja Mihajlović ◽  
Slavko Đurić ◽  
Milan Milotić ◽  
Milena Stošić ◽  
...  

Pyrolysis is an optimal thermochemical process for obtaining valuable products (char, oil, and gas) from waste tires. The preliminary research was done on the three groups of samples acquired by cutting the same waste tire of a passenger vehicle into cylindrical granules with a base diameter of 3, 7, and 11 mm. Each batch weighed 10 g. The heating rate was 14 °C/min, and the final pyrolysis temperature was 750 °C, with 90 s residence time. After the pyrolysis product yields were determined for all of the three sample groups, further research was performed only on 3 mm granules, with the same heating rate, but with altered final pyrolytic temperatures (400, 450, 500, 550, 600, 650, 700, and 750 °C). The results of this study show that thermochemical decomposition of the waste tire sample takes place in the temperature range of 200–500 °C, with three distinct phases of degradation. The highest yield of the pyrolytic oil was achieved at a temperature of 500 °C, but further heating of volatile matters reduced the oil yield, and simultaneously increased the yield of gas, due to the existence of secondary cracking reactions. The analysis of pyrolytic oil and char showed that these products can be used as fuel.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 849
Author(s):  
Chen Hong ◽  
Zhiqiang Wang ◽  
Yanxiao Si ◽  
Yi Xing ◽  
Jian Yang ◽  
...  

In this study, penicillin residue (PR) was used to prepare bio-oil by hydrothermal liquefaction. The effects of homogeneous (organic acid and alkaline catalysts) and heterogeneous catalysts (zeolite molecular sieve) on the yield and properties of bio-oil were investigated. The results show that there are significant differences in the catalytic performance of the catalysts. The effect of homogeneous catalysts on the bio-oil yield was not significant, which only increased from 26.09 (no catalysts) to 31.44 wt.% (Na2CO3, 8 wt.%). In contrast, heterogeneous catalysts had a more obvious effect, and the oil yield reached 36.44 wt.% after adding 5 wt.% MCM-48. Increasing the amount of catalyst enhanced the yield of bio-oil, but excessive amounts of catalyst led to a secondary cracking reaction, resulting in a reduction in bio-oil. Catalytic hydrothermal liquefaction reduced the contents of heteroatoms (oxygen, mainly), slightly increased the contents of C and H in the bio-oil and increased the higher heating value (HHV) and energy recovery (ER) of bio-oil. FTIR and GC-MS analyses showed that the addition of catalysts was beneficial in increasing hydrocarbons and oxygen-containing hydrocarbons in bio-oil and reducing the proportion of nitrogen-containing substances. Comprehensive analyses of the distribution of aromatic, nitrogen-containing and oxygen-containing components in bio-oil were also performed. This work is beneficial for further research on the preparation of bio-oil by hydrothermal liquefaction of antibiotic fermentation residue.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 302
Author(s):  
Qiang Wu ◽  
Can Sun ◽  
Zi-Zong Zhu ◽  
Ying-Dong Wang ◽  
Chong-Yuan Zhang

Modified cokes with improved resistance to CO2 reaction were produced from a high volatile coking coal (HVC) and different concentrations of boron carbide (B4C) in a laboratory scale coking furnace. This paper focuses on modification mechanism about the influence of B4C on coking behavior and chemical structure during HVC carbonization. The former was studied by using a thermo-gravimetric analyzer. For the latter, four semi-cokes prepared from carbonization tests for HVC with or without B4C at 450 °C and 750 °C, respectively, were analyzed by using Fourier transform infrared spectrum and high-resolution transmission electron microscopy technologies. It was found that B4C will retard extensive condensation and crosslinking reactions by reducing the amount of active oxygen obtained from thermally produced free radicals and increase secondary cracking reactions, resulting in increasing size of aromatic layer and anisotropic degree in coke structure, which eventually improves the coke quality.


2021 ◽  
Vol 342 ◽  
pp. 02005
Author(s):  
Mihaela Toderaş ◽  
Mykhailo Filatiev

In the case of Roşia Poieni open pit mine the level of +805 m was established as a daily operating limit; the division into benches was based on this level by dividing into horizontal slices with a thickness of 15 m, equal to the height of the bench. Thus, there were 27 benches in the Curmătura area and 23 benches in the Ruginiş area. The general slope angle was set at 35°, the angle for which the tailings volumes and implicitly the opening-up coefficient were calculated. The stability analysis was performed for individual bench, 2 benches system and the general slope of the quarry (consisting of 24 benches), using two methods (Fellenius and Janbu). A polygonal slip surface was also modelled; such potential landslide surfaces can appear in the slopes of the Roşia Poieni quarry due to the natural cracking systems of the massif but also due to the secondary cracking generated by the used drilling-blasting works (exploitation technology). The stability check was done by applying Hoek’s graphical-analytical method; the determined values for the safety factor satisfy the condition of being greater than 1.3. In these circumstances, no further measures are required to increase the stability reserve.


Scanning ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiaoyang Liu ◽  
Haodan Pan ◽  
Chuang Guo ◽  
Xiaojing Di ◽  
Hongxiang Hu

Shale ash (SA) as the carrier, the ratio of Cu to Ni in the Cu-Ni transition metal salt being, respectively, 1 : 0, 2 : 1, 1 : 1, 1 : 2, 0 : 1, the double transition metal salt catalyst (CumNin/SA) was prepared to explore the effect of such catalysts on the pyrolysis behavior and characteristics of Fushun OS. The research results show that the temperature ( T max ) corresponding to the maximum weight loss rate decreased by 12.9°C, 4.0°C, and 3.6°C; and the apparent activation energy decreased by 35.2%, 33.9%, and 29.6%, respectively, after adding catalysts Cu0Ni1/SA in pyrolysis. The addition of Cu0Ni1/SA and Cu2Ni1/SA further improves the shale oil (SO) yield of 3.5% and 3.1%, respectively. Cu0Ni1/SA produces more aromatic hydrocarbons, which, however, weakens the stability of SO and is of toxicity in use. After analyzing the pyrolysis product—semicoke (SC) and SO—with ATR-FTIR and GC-MS methods, CumNin/SA promotes the secondary cracking and aromatization of OS pyrolysis, increasing the content of the compound of olefins and aromatics in SO, and hastening the decomposition of long-chain aliphatic hydrocarbons to short-chain aliphatic hydrocarbons.


Author(s):  
H Musfer

Gasification is a thermo-chemical process used to convert biomass fuelsinto a fuel gas. Biomass gasification is considered amongst the best methods to enhance biomass-based energy production’s efficiency as it allows common biomass utilization.It has become more important as a mean of converting low energy-density such as biomass feeds or into a transportable high value gas for heat and power generation, chemicals and fuels. Operating conditions are affecting the gasification reactions. the review identified that in high-temperature gasification, endothermic reactions the secondary cracking and reforming of heavy hydrocarbons are favored and hence enhances the whole process’s efficiency. Finally, catalysts are vital for the biomass gasification process, and it is important to select the appropriate ones taking into consideration possible setbacks discussed above and will be explored further in this study.


2018 ◽  
Vol 1 (3) ◽  
pp. 202-208 ◽  
Author(s):  
Somprasong Siramard ◽  
Jin-Hui Zhan ◽  
Zhennan Han ◽  
Shipei Xu ◽  
Ondřej Mašek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document