Characterization of multi-walled carbon nanotubes and application for Ni2+adsorption from aqueous solutions

2015 ◽  
Vol 57 (25) ◽  
pp. 11623-11630 ◽  
Author(s):  
Foteini Giannakopoulou ◽  
Constantina Haidouti ◽  
Dionisios Gasparatos ◽  
Ioannis Massas ◽  
George Tsiakatouras
2014 ◽  
Vol 70 (6) ◽  
pp. 964-971
Author(s):  
Xu Chen ◽  
Zhen-hu Xiong

Magnetic multi-wall carbon nanotubes (M-MWCNTs) were used as an adsorbent for removal of furaltadone from aqueous solutions, and the adsorption behaviors were investigated by varying pH, sorbent amount, sorption time and temperature. The results showed that the adsorption efficiency of furaltadone reached 97% when the dosage of M-MWCNT was 0.45 g · L−1, the pH was 7 and the adsorption time was 150 min. The kinetic data showed that the pseudo-second-order model can fit the adsorption kinetics. The sorption data could be well explained by the Langmuir model under different temperatures. The adsorption process was influenced by both intraparticle diffusion and external mass transfer. The experimental data analysis indicated that the electrostatic attraction and π–π stacking interactions between M-MWCNT and furaltadone might be the adsorption mechanism. Thermodynamic analysis reflected that adsorption of furaltadone on the M-MWCNT was spontaneous and exothermic. Our study showed that M-MWCNTs can be used as a potential adsorbent for removal of furaltadone from water and wastewater.


2012 ◽  
Vol 18 (S2) ◽  
pp. 1316-1317
Author(s):  
M.J. Guinel ◽  
N. Brodusch ◽  
R. Gauvin ◽  
Y. Verde-Gomez ◽  
B. Escobar-Morales

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


Carbon ◽  
2011 ◽  
Vol 49 (1) ◽  
pp. 24-36 ◽  
Author(s):  
Kevin A. Wepasnick ◽  
Billy A. Smith ◽  
Kaitlin E. Schrote ◽  
Hannah K. Wilson ◽  
Stephen R. Diegelmann ◽  
...  

Author(s):  
Huynh Anh Hoang ◽  
Huynh Quyen

Since the end of the 20th century, nanomaterials such as carbon nanotubes (CNTs) have been considered as one of the greatest achievements in the field of material science. Nowadays, further research on CNTs is still being conducted to unfold the full potential of this material. Generally, CNTs production methods have been extensively studied, specifically on CNTs synthesis route via liquefied hydrocarbon gas in the presence of a catalyst. From the synthesized material, further investigation including characterization and investigation of this nano size system’s effects on the physics, chemical, mechanical rules applied to macroscopic (bulk materials) and microscopic systems (atoms, molecules). In this present work, we demonstrated the research results of the synthesis of nano-carbon materials from a liquefied hydrocarbon gas (Liquefied Petroleum Gas: LPG) and its application to red phenol absorption in the liquid phase. CNTs used in this study were synthesized by chemical vapor deposition (CVD) method with Fe /ℽ-Al2O3 as the catalyst. The research results demonstrated that CNTs synthesized from LPG in this work were reported to be multi-walled tubes (MWCNTs: Multi-Walled Carbon Nanotubes) with physical characteristics including average internal and external diameters were of 6 nm and 17 nm, respectively. The measured specific surface suggested by BET data was 200 m2/g. The experimental study of red phenol adsorption by MWCNTs showed that the adsorption process followed both Freundlich and Langmuir isotherm adsorption models with the maximum monolayer adsorption capacity of 47.2 mg/g. The research results again showed that it was possible to synthesize MWCNTs from hydrocarbon gas sources via the CVD method by utilizing catalysts. Additionally, red phenol absorption via such material had shown to follow both Freundlich and Langmuir isotherm model, which allow further characterization of this material using Raman, EDX, SEM, TEM, BET, in order to extend the library database on the characterization of the reported synthesized material.


Sign in / Sign up

Export Citation Format

Share Document