cesium ions
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 49)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Vol 12 (2-2021) ◽  
pp. 77-82
Author(s):  
D. V. Gryaznova ◽  
◽  
G. O. Kalashnikova ◽  

The description of a new and insufficiently studied mineral armbrusterite is presented in this paper. The mineral was analyzed from the point of view of its chemical properties and prospects for practical application. The mineral's sorption properties for arsenic and cesium ions were studied. The possibility of synthesis an analog of the mineral due to hydrothermal synthesis was estimated


Author(s):  
UZAIR AHMED ◽  
MOHSAN JELANI ◽  
NAJAM UL HASSAN ◽  
MUHAMMAD NAEEM ◽  
TAHIR ZAMAN ◽  
...  

To use gold and copper ions for ion implantation through 1-MV pelletron accelerator, gold and copper targets were bombarded with low energy cesium ions applying source of negative ions by cesium sputtering (SNICS). This work aims to investigate the cluster dynamics of these noble metals in a low energy range so that optimized data can be obtained for the use of these cluster ions in ion implantation. Negative ions including monomers and clusters of both metals were detected which were mass analyzed. Cu clusters up to Cu[Formula: see text] and gold clusters up to Au[Formula: see text] were emitted. The minimum energy of cesium ions to produce enough cluster ions so that they could be detected by a mass analyzer has been determined. The data was analyzed to measure sputtering yield, total sputtering yield and normalized number density of different sputtered species. In this energy range, the sputtering behaviors of Cu remain almost constant but in the case of Au there is a slight increase in cluster sputtering probability with an increase in incident ion energy. The sputtering yield of clusters decreases according to the power-law, i.e. [Formula: see text]. Power law exponent in the case of copper has an average value of [Formula: see text] whereas exponent in the case of gold clusters changes from 3.5 to 6.


Author(s):  
Hao Wu ◽  
Tatsuya Kudo ◽  
Seong-Yun Kim ◽  
Misako Miwa ◽  
Shigeo Matsuyama

Author(s):  
Luyao Lin ◽  
Ye Li ◽  
Jie Wan ◽  
Cong Liu ◽  
Xiaoli Wang ◽  
...  

Abstract In recent years, TNS has attracted wide attention because of its simplicity in synthesis and high efficiency in ion exchange. The adsorption of cesium ions in aqueous solution by TNS was investigated in this stud. Results show that the removal rate of Cs (I) is about 88% when pH = 5.00 ± 0.05, C0 = 10 ppm and CTNS = 0.1 g/L. The adsorption equilibrium is reached in about 20 minutes and best fits pseudo-second order model, R2 = 0.9998; Compared with the Freundlich isotherm adsorption model and Temkin model, the Langmuir model has the best fitting effect, R2 = 0.9903. The fitting results show the maximum adsorption capacity of TNS for Cs (I) is 200.00 mg/g. The main adsorption mechanism of TNS to cesium ion is ion exchange. Therefore, TNS can be used as a potential adsorbent for effectively adsorbing Cs-containing wastewater.


2021 ◽  
Vol 43 (5) ◽  
pp. 336-346
Author(s):  
Youngsu Lim ◽  
Dongwoo Kim ◽  
Jiseon Jang ◽  
Bolam Kim ◽  
Dae Sung Lee

Objectives: Among various radioactive contaminants, radioactive cesium is one of the most harmful radionuclides that causes human health issues due to its high emission of gamma-ray, high solubility, high mobility, high fission yield, and long half-life. Different kinds of adsorbents have been developed for the removal of cesium from radioactive wastewater. Especially, biochar has attracted great attention as a potential adsorbent in the treatment of pollutants and for water purification. In addition, Prussian blue is a cubic lattice structure that contains a cage size similar to the hydrated cesium ionic radius, indicating it can selectively remove cesium ions. Therefore, the aim of this study is to investigate the cesium adsorption performance of synthesized Prussian blue-immobilized coffee ground biochar (PB-CGBC) under various experimental conditions for cesium removal from radioactive wastewater.Methods: After wasted coffee ground was washed and dried, it was heated at 400℃ with 10℃/min of heating rate and 5 h of retention time in a furnace with little or no available air. The PB-CGBC was synthesized using a facile co-precipitation method. Fourier transform-infrared spectroscopy, X-ray diffractometer, field emission-transmission electron microscope, Brunauer-Emmett-Teller, and zeta potential analyzer were used to analyze physico-chemical characteristics and surface structure of the synthesized adsorbents. The kinetic and equilibrium experiments of cesium adsorption on PB-CGBC were carried out and the effect of pH, temperature, initial cesium concentration, and contact time were also investigated in a batch system.Results and Discussion: The characteristic analysis clearly confirmed the successful synthesis of PB-CGBC, indicating its abundant functional groups and special surface structure. In the batch study, it was found that the cesium adsorption onto the PB-CGBC was exothermic nature. The Elovich kinetic model and Temkin isotherm also provided a good correlation with the cesium adsorption reaction onto the PB-CGBC. The maximum adsorption capacity of PB-CGBC for cesium was 129.57 mg/g at 15℃ and pH 8 at 40 mM of an initial cesium concentration, which was one of the highest values among those of previously reported adsorbents.Conclusions: In this study, the PB-CGBC was synthesized by immobilizing Prussian blue to the surface of coffee ground biochar and successfully applied for the adsorptive removal of cesium ions. Based on the experimental results, the synthesized PB-CGBC can be served as a great adsorbent for treatment of wastewater polluted with radioactive cesium.


2021 ◽  
Vol 19 (49) ◽  
pp. 1-6
Author(s):  
Amir Abdullah Mohammed ◽  
Hayder Saleem Hussain ◽  
Salam K. Abdullah

  Prepared zeolite type A was used for the removal of cesium ions from aqueous solution. The experimental data were analyzed by Langmuir, Freundlich isotherms. Various parameters, such as contact time, zeolite weight, pH, and initial concentration, were studied The results indicated that the highestt removal efficiency was  95.53% at (2h time, 0.04 g weight, and pH=6.8). The results also showed that the Freundlic model fits well with the experimental results and is better than the Langmuir model.


Surfaces ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 41-53
Author(s):  
Emad Elshehy

Decontamination of water from radionuclides contaminants is a key priority in environmental cleanup and requires intensive effort to be cleared. In this paper, a microporous iron-doped zeolite-like sodium zirconosilicate (F@SZS) was designed through hydrothermal synthesis with various Si/Zr ratios of 5, 10, and 20, respectively. The synthesized materials of F@SZS materials were well characterized by various techniques such as XRD, SEM, TEM, and N2 adsorption–desorption measurements. Furthermore, the F@SZS-5 and F@SZS-10 samples had a crystalline structure related to the Zr–O–Si bond, unlike the F@SZS-20 which had an overall amorphous structure. The fabricated F@SZS-5 nanocomposite showed a superb capability to remove cesium ions from ultra-dilute concentrations, and the maximum adsorption capacity was 21.5 mg g–1 at natural pH values through an ion exchange mechanism. The results of cesium ions adsorption were found to follow the pseudo-first-order kinetics and the Langmuir isotherm model. The microporous iron-doped sodium zirconosilicate is described as an adsorbent candidate for the removal of ultra-traces concentrations of Cs(I) ions.


2021 ◽  
Vol 94 (1) ◽  
pp. 122-132
Author(s):  
Nadia Boukhalfa ◽  
Margarita Darder ◽  
Mokhtar Boutahala ◽  
Pilar Aranda ◽  
Eduardo Ruiz-Hitzky

Sign in / Sign up

Export Citation Format

Share Document