Prediction of limit support pressure for face stability of deep tunnels buried beneath sea/water

Author(s):  
Jianfeng Zhou ◽  
Changbing Qin
2017 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
Kai Wen ◽  
Hideki Shimada ◽  
Wei Zeng ◽  
Takashi Sasaoka ◽  
Akihiro Hamanaka

In this paper, a series of parametric three-dimension numerical simulations were carried out to estimate the face stability and to calculate the minimum allowable slurry pressure of pipe jacking tunnel in frozen ground for the first time. In total, 5120 of simulation schemes were done with different ground temperature, diameter and cover thickness of tunnel, cohesion and friction angle of frozen soil. In order to figure out the optimal grouting pressure, 4 groups of additional simulations are computed with the uniform face support pressure of 0.5, 1.0, 1.5 and 2.0 times of horizontal stress, σH, at tunnel axis. The qualitative analysis of heading face deformation mechanism and quantitative analysis between deformation profiles and influential factors were implemented to comprehend the heading face deformation characteristics when conducting pipe jacking tunnel in frozen ground. The results show that ground temperature plays a dominant role to control the face deformation of jacking tunnel in frozen ground. And, factors of tunnel diameter and cover thickness have relatively greater influence on the deformation regulation than that of shearing parameters of frozen soil, cohesion and friction angle. Finally, the minimum allowable slurry pressure for each simulation schemes are obtained, which may be used in construction the pipe jacking tunnel in frozen ground.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Xilin Lu ◽  
Haoran Wang ◽  
Maosong Huang

By FE simulation with Mohr-Coulomb perfect elastoplasticity model, the relationship between the support pressure and displacement of the shield tunnel face was obtained. According to the plastic strain distribution at collapse state, an appropriate failure mechanism was proposed for upper bound limit analysis, and the formula to calculate the limit support pressure was deduced. The limit support pressure was rearranged to be the summation of soil cohesionc, surcharge loadq, and soil gravityγmultiplied by their corresponding coefficientsNc,Nq, andNγ, and parametric studies were carried out on these coefficients. In order to consider the influence of seepage on the face stability, the pore water pressure distribution and the seepage force on the tunnel face were obtained by FE simulation. After adding the power of seepage force into the equation of the upper bound limit analysis, the total limit support pressure for stabilizing the tunnel face under seepage condition was obtained. The total limit support pressure was shown to increase almost linearly with the water table.


2011 ◽  
Vol 261-263 ◽  
pp. 1029-1033 ◽  
Author(s):  
Kai Wang ◽  
Hai Gui Kang ◽  
Hai Tao Wang

The effect of seepage force on tunnel face stability with pipe roof reinforcement was studied based on the kinematic method of limit analysis. This method can be employed to define the safety factor and its corresponding critical failure mechanism for a given tunnel. The studies revealed that the existence of groundwater may seriously affect the face stability. Under the steady-state groundwater flow condition, most part of the total support pressure is owing to the seepage pressure acting on the tunnel face. There was a relatively large reduction in the seepage pressure by adopting the pipe roof reinforcement technique.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Weiping Liu ◽  
Shaofeng Wan ◽  
Xinqiang Song ◽  
Mingfu Fu ◽  
Lina Hu

The sufficient support pressure is essential to guarantee the safe construction of shield tunnel. Thus, it is necessary to analyze the stability and assess the limit support pressure of the tunnel face. The main methods for face stability analysis mostly focused on finite element method, limit equilibrium method, and numerical simulation method. In this paper, the slip line method is applied to analyze the stability of the tunnel face. The soil is supposed as ideal isotropic, homogeneous, and incompressible continuous material, which obeys the Mohr–Coulomb yield criterion. A mathematical model of the limit equilibrium boundary value problem is established. The slip line method is used to solve the slip line field and stress field of the soil behind the tunnel face. Limit support pressure and failure mechanism of the tunnel face are then obtained. In addition, comparisons between the results of this study and those of existing approach are performed, and the influence factors are also discussed. The results show that the slip line method is proven to be reliable for the evaluation of limit support pressure of the tunnel face stability.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yuan Zhou ◽  
Yuming Zhu ◽  
Shumao Wang ◽  
Hu Wang ◽  
Zhengxing Wang

Face stability analyses of shield-driven tunnels are often carried out to determine the required support pressure on the tunnel face. Although various three-dimensional mechanisms have been proposed for circular faces of tunnels in frictional and/or cohesive soils to obtain the limit support pressure, the most critical one has not yet been found. Based on a rotational failure mechanism for the frictional soils, this paper modifies the circular cross section as an ellipse to make the generating collapse surface inscribe the entire circular tunnel face. Using the kinematical approach of limit analysis yields an upper bound to the limit support pressure. Through comparisons with the existing results in the literature, the improved mechanism can better estimate the upper bound and is very similar to the observed failures in the experimental tests. The influences of the pore water pressure are also included in the stability analysis of tunnel faces. Calculated upper-bound solutions are presented in a condensed form of charts for convenient use in practice.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Weiping Liu ◽  
Xiaoyan Luo ◽  
Jinsong Huang ◽  
Lina Hu ◽  
Mingfu Fu

A key issue in assessment on tunnel face stability is a reliable evaluation of required support pressure on the tunnel face and its variations during tunnel excavation. In this paper, a Bayesian framework involving Markov Chain Monte Carlo (MCMC) simulation is implemented to estimate the uncertainties of limit support pressure. The probabilistic analysis for the three-dimensional face stability of tunnel below river is presented. The friction angle and cohesion are considered as random variables. The uncertainties of friction angle and cohesion and their effects on tunnel face stability prediction are evaluated using the Bayesian method. The three-dimensional model of tunnel face stability below river is based on the limit equilibrium theory and is adopted for the probabilistic analysis. The results show that the posterior uncertainty bounds of friction angle and cohesion are much narrower than the prior ones, implying that the reduction of uncertainty in cohesion and friction significantly reduces the uncertainty of limit support pressure. The uncertainty encompassed in strength parameters are greatly reduced by the MCMC simulation. By conducting uncertainty analysis, MCMC simulation exhibits powerful capability for improving the reliability and accuracy of computational time and calculations.


Sign in / Sign up

Export Citation Format

Share Document