scholarly journals Rotational Failure Mechanism for Face Stability of Circular Shield Tunnels in Frictional Soils

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yuan Zhou ◽  
Yuming Zhu ◽  
Shumao Wang ◽  
Hu Wang ◽  
Zhengxing Wang

Face stability analyses of shield-driven tunnels are often carried out to determine the required support pressure on the tunnel face. Although various three-dimensional mechanisms have been proposed for circular faces of tunnels in frictional and/or cohesive soils to obtain the limit support pressure, the most critical one has not yet been found. Based on a rotational failure mechanism for the frictional soils, this paper modifies the circular cross section as an ellipse to make the generating collapse surface inscribe the entire circular tunnel face. Using the kinematical approach of limit analysis yields an upper bound to the limit support pressure. Through comparisons with the existing results in the literature, the improved mechanism can better estimate the upper bound and is very similar to the observed failures in the experimental tests. The influences of the pore water pressure are also included in the stability analysis of tunnel faces. Calculated upper-bound solutions are presented in a condensed form of charts for convenient use in practice.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Kaihang Han ◽  
Chengping Zhang ◽  
Wei Li ◽  
Caixia Guo

In order to better interpret failure features of the failure of soil in front of tunnel face, a new three-dimensional failure mechanism is proposed to analyze the limit support pressure of the tunnel face in multilayered cohesive-frictional soils. The new failure mechanism is composed of two truncated cones that represent the shear failure band and a distributed force acting on the truncated cones that represents the pressure arch effect. By introducing the concept of Terzaghi earth pressure theory, approximation of limit support pressures is calculated using the limit analysis methods. Then the limit support pressures obtained from the new failure mechanism and the existing approaches are compared, which show that the results obtained from the new mechanism in this paper provide relatively satisfactory results.


2020 ◽  
Vol 143 ◽  
pp. 01015
Author(s):  
Wenjie Song ◽  
Yanyong Xiang

An analytical continuous upper bound limit analysis is developed to analyse the effects of seepage on the transverse stability of underwater shield tunnels. The approach is based on an analytical continuous upper bound limit analysis method for cohesive-frictional soils. It employs the complex variables solution of the displacement field due to tunnel deformation and movement, and the analytical solution of the pore water pressure field for steady state seepage due to pore water influx at the tunnel perimeter. The most critical slip line position and the minimum required tunnel support pressure are determined by using a particle swarm optimization scheme for various generic situations. The method is verified via finite element simulation and comparison with the solution from using rigid block upper bound limit analysis. The parametric analysis revealed among other things that both the infimum of the necessary tunnel support pressure and the most critical plastic zone increase when the hydraulic head at the ground surface increases, but decrease when the tunnel influx increases due to the fact that pore water pressure at the tunnel perimeter decreases with the tunnel influx.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Hong-Tao Wang ◽  
Ping Liu ◽  
Chi Liu ◽  
Xin Zhang ◽  
Yong Yang ◽  
...  

Based on the plastic upper bound theorem, a three-dimensional kinematically admissible velocity field is constructed for the collapse of the soil masses above a shallow tunnel. In this field, this paper considers the influences of the roof stratification, pore water pressure, ground overload, and support pressure. This study deduced the upper bound solutions of the weight of the collapsed soil masses and the corresponding collapse surfaces by utilizing the nonlinear failure criterion, associated flow rule, and variation principle. Furthermore, we verified the validity of the proposed method in this paper by comparing this research with the existing work and numerical simulation results. This study obtains the influence laws of varying parameters on the area and weight of the collapsed soil masses. The results reveal that the area and weight of the collapsed soil masses increase with increasing support pressure and soil cohesion, but decrease with increasing thickness of the upper soil layer, nonlinear coefficient, pore water pressure, and ground overload. Among them, the roof stratification, pore water pressure, soil cohesion, and nonlinear coefficient have a significant influence on tunnel collapse, which should be given special consideration in engineering design.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Xilin Lu ◽  
Haoran Wang ◽  
Maosong Huang

By FE simulation with Mohr-Coulomb perfect elastoplasticity model, the relationship between the support pressure and displacement of the shield tunnel face was obtained. According to the plastic strain distribution at collapse state, an appropriate failure mechanism was proposed for upper bound limit analysis, and the formula to calculate the limit support pressure was deduced. The limit support pressure was rearranged to be the summation of soil cohesionc, surcharge loadq, and soil gravityγmultiplied by their corresponding coefficientsNc,Nq, andNγ, and parametric studies were carried out on these coefficients. In order to consider the influence of seepage on the face stability, the pore water pressure distribution and the seepage force on the tunnel face were obtained by FE simulation. After adding the power of seepage force into the equation of the upper bound limit analysis, the total limit support pressure for stabilizing the tunnel face under seepage condition was obtained. The total limit support pressure was shown to increase almost linearly with the water table.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1023 ◽  
Author(s):  
Bo Mi ◽  
Yanyong Xiang

The objective was to optimize the existing solution for the limit support pressure of a tunnel face. Firstly, based on the numerical simulation results, the existing three-dimensional analytical solution for pore water pressure distribution is expanded to a three-dimensional solution considering the pore water pressure distribution in the upper formation behind the tunnel face. Then, according to the results of physical model tests, a failure model considering the failure range in the upper formation behind the tunnel face is established, and the newly established three-dimensional solution for pore water pressure is introduced into the model, and then the limit effective support pressure of the tunnel face considering seepage is obtained by the method of soil–water joint calculation. Finally, the calculation results in this paper are compared with the experimental results, numerical simulation results and existing theoretical solutions. The major findings are as follows. The distribution of pore water pressure in the front and back strata above the tunnel face is basically symmetrical. The limit effective support pressure of the tunnel face will increase linearly with an increase in the hydraulic head difference between the tunnel face and the ground surface. The calculated results of the new limit equilibrium theory are obviously larger than those of the existing theory and numerical simulation and closer to the results of the physical model tests. Therefore, the new limit equilibrium model can better predict the limit effective support pressure of the tunnel face considering seepage and provide a reference for actual projects.


2003 ◽  
Vol 40 (2) ◽  
pp. 342-350 ◽  
Author(s):  
In-Mo Lee ◽  
Seok-Woo Nam ◽  
Jae-Hun Ahn

In this study, two factors are simultaneously considered for assessing tunnel face stability. The first is the effective stress acting on the tunnel face calculated by upper bound solution, and the other is the seepage force calculated by numerical analysis under the condition of steady-state groundwater flow. The seepage forces calculated by numerical analysis are compared with the results of a model test. The upper bound solution taking into consideration the seepage force acting on the tunnel face, shows that the minimum support pressure for the face stability is equal to the sum of the effective support pressure that is obtained from the upper bound solution based on effective stress and the seepage pressure acting on the tunnel face. It was found that the average seepage pressure acting on the tunnel face is proportional to the hydrostatic pressure at the same elevation, and the magnitude is about 22% of the hydrostatic pressure for the drainage type tunnel and about 28% for the waterproof type tunnel. The seepage forces obtained from the results of a model test showed similar trends as those calculated by numerical analysis.Key words: face stability, upper bound solution, seepage force, model test.


Sign in / Sign up

Export Citation Format

Share Document