Investigation of the effect of commercial limestone on alkali-activated blends based on Algerian slag-glass powder

Author(s):  
Hichem Alioui ◽  
Tarek Chiker ◽  
Fatma Saidat ◽  
Mohamed Lamara ◽  
Salima Aggoun ◽  
...  
2020 ◽  
Vol 258 ◽  
pp. 120381
Author(s):  
Long Li ◽  
Jian-Xin Lu ◽  
Binyu Zhang ◽  
Chi-Sun Poon

2019 ◽  
Vol 69 (335) ◽  
pp. 194 ◽  
Author(s):  
S. Stoleriu ◽  
I. N. Vlasceanu ◽  
C. Dima ◽  
A. I. Badanoiu ◽  
G. Voicu

Porous alkali activated materials (AAM), can be obtained from waste glass powder and slag mixtures by alkali activation with NaOH solution. To obtain an adequate porous microstructure, the hardened AAM pastes were thermally treated at temperatures ranging between 900°C and 1000°C, for 60 or 30 minutes. Due to the intumescent behaviour specific for this type of materials, an important increase of the volume and porosity occurs during the thermal treatment. The partial substitution of waste glass powder with slag, determines the increase of compressive strength assessed before (up to 37 MPa) and after (around 10 MPa) thermal treatment; the increase of slag dosage also determines the increase of the activation temperature of the intumescent process (above 950°C). The high porosity and the specific microstructure (closed pores with various shapes and sizes) of these materials recommend them to be utilised as thermal and acoustical insulation materials.


Author(s):  
Adeyemi Adesina ◽  
Jonathan Cercel ◽  
Sreekanta Das

This study presents the experimental investigation of the effect of curing media on the properties of mortar mixtures made with sodium carbonate activated slag-glass powder as a binder. Slag and glass powder were used at an equal percentage as the aluminosilicate precursor and the binary blend was activated with sodium carbonate. The compressive strength and ultrasonic pulse velocity of the mixtures cured in different conditions were investigated. The curing conditions used in this study are dry, moist, and submerged curing. Microstructural investigations were also carried out to understand the microstructural properties of the mixtures exposed to these curing conditions. Results from this study showed that moist curing is the most effective curing method for mortar made with sodium carbonate alkali-activated slag-glass powder as a binder. Microstructural evaluations further confirm the strength results as mortar samples cured in a moist condition exhibited a denser microstructure.


Sign in / Sign up

Export Citation Format

Share Document